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Processing delays are a serious problem in both civil and criminal
cases. Civil cases often take many years to process from the time the
litigation is filed until the case goes to trial. Delay injures plaintiffs
who must wait to be compensated for their injuries. It also adversely
affects the judicial system because of the increased likelihood that wit-
nesses will forget, disappear, or die before a case reaches trial. Al-
though criminal cases generally do not consume as much time as civil
cases, the injury caused by delay may be even greater. If the defendant
is jailed while awaiting trial, he may be confined for a longer period
than the maximum sentence he could have received if convicted. If the
defendant is not jailed while awaiting trial, long delay may increase the
likelihood that he will commit further crimes or fail to appear at his
trial.'

A related legal process problem is the lack of planning for the effects
of changes in the legal system. These changes include, but are not lim-
ited to, increases or decreases in certain kinds of cases, resources avail-
able to the courts, discretion in legal decisionmaking, severity in
sentences or damages, and concepts of due process. Lack of planning
often means increased delay, undesirable outcomes, and disruption of
individual rights. The legal system can avoid these results if legal proc-
ess planners had models like those that are helpful in planning business
activities, government budgets, municipal facilities, and adaptations to
technological change.2

This article describes a series of models for analyzing the legal proc-

1. For thorough analyses of the problem of delay in the legal process, see H. JAMES, CRISIS
IN THE COURTS (rev. ed. 1971); H. ZEISEL, H. KALVEN, JR., & B. BUCHHOLZ, DELAY IN THE
COURT (1959) [hereinafter cited as H. ZEISEL]; WALTER E. MEYER RESEARCH INSTITUTE OF LAW,
DOLLARS, DELAY AND THE AUTOMOBILE VICTIM (1968); THE COURTS, THE PUBLIC, AND THE

LAW ExPLOSION (H. Jones ed. 1965); SELECTED READINGS: COURT CONGESTION AND DELAY (G.
Winters ed. 1971).

2. For thorough analyses of the problem of lack of planning in the legal process, see THE
COUNCIL OF STATE GOVERNMENTS, JUDICIAL PLANNING IN THE STATES (1976); D. GIBBONS, J.
THIM; F. YospE, & G. BLAKE, CRIMINAL JUSTICE PLANNING (1977); D. GLASER, STRATEGIC
CRIMINAL JUSTICE PLANNING (1975); NATIONAL CENTER FOR STATE COURTS, PLANNING IN
STATE COURTS: A SURVEY OF THE STATE OF THE ART (1976); ISSUES IN CRIMINAL JUSTICE:
PLANNING AND EVALUATION (M. Riedel & D. Chappel eds. 1976).
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TIME-ORIENTED MODELS

ess that emphasize either time-saving or the prediction of future events
from past events. A model or analytic perspective describes a set of
concepts, methods, and basic principles to deduce prescriptive state-
ments of what should be done (prescriptive or optimizing models) or to
describe or predict future consequences (descriptive models). The pre-
scriptive models primarily seek to reduce time consumed in the legal
process; the descriptive or predictive models are primarily concerned
with predicting future legal process events from prior events.3 Further,
optimizing models may be valuable predictive tools, and predictive
models may be valuable in making time-saving recommendations. The
article is divided into two parts with the first emphasizing prescriptive
models and the second emphasizing descriptive models. The prescrip-
tive models include: (1) queueing theory, which emphasizes time reduc-
tion by reducing arrivals, increasing processors, and shortening
processing; (2) dynamic programming or optimum sequencing, which
emphasizes time reduction through more efficient ordering of cases; (3)
PERT or critical path analysis, which emphasizes time reduction
through concentration on those events that are responsible for delaying
the occurrence of subsequent events; and (4) optimum level analysis,
which attempts to find an optimum level of effort or expenditures to
minimize the sum of the delay costs and the speed-up costs. The de-
scriptive models include: (1) Markov chain analysis, which emphasizes

3. On prescriptive and descriptive modeling in management science and operations re-
search, see D. ANDERSON, D. SWEENEY, & T. WILLIAMS, AN INTRODUCTION TO MANAGEMENT
SCIENCE QUANTITATIVE APPROACHES TO DECISION MAKING (1976); S. RICHMOND, OPERATIONS

RESEARCH FOR MANAGEMENT DECISIONS (1968); H. TAHA, OPERATIONS RESEARCH: AN INTRO-

DUCTION (2d ed. 1976); R. THIERAUF, DECISION MAKING THROUGH OPERATIONS RESEARCH
(1970); H. WAGNER, PRINCIPLES OF OPERATIONS RESEARCH WITH APPLICATIONS TO MANAGE-

RL4L DECISIONS (2d ed. 1975). Management science and operations research develop methods to
determine policies for maximizing goals under varying conditions.

On modeling, particularly as applied to governmental and legal problems, see E. BELTRAMI,
MODELS FOR PUBLIC SYSTEMS ANALYSIS (1977); J. BYRD, OPERATIONS RESEARCH MODELS FOR

PUBLIC ADMINISTRATION (1975); M. GREENBERGER, M. CRENSON, & B. CRISSEY, MODELS IN

THE POLICY PROCESS (1976); W. HELLY, URBAN SYSTEMS MODELS (1975); S. NAGEL & M. NEEF,

THE LEGAL PROCESS: MODELING THE SYSTEM (1977); M. WHITE, M. RADNOR, & D. TANSIK,

MANAGEMENT AND POLICY SCIENCE IN AMERICAN GOVERNMENT (1975); A GUIDE TO MODELS
IN GOVERNMENTAL PLANNING AND OPERATIONS (S. Gass & R. Sisson eds. 1975); SYSTEMS

ANALYSIS FOR SOCIAL PROBLEMS (A. Blumstein, M. Kamrass, & A. Weiss eds. 1970). Manage-
ment science models as applied to the legal process have dealt with delay reduction, but those
applications have emphasized flow chart models and queueing theory rather than the fuller range
of potentially applicable models.

For a discussion of the elementary mathematical aspects of modeling, see M. BRENAN, PREF-
ACE TO ECONOMETRICS (1973); C. DINWIDDY, ELEMENTARY MATHEMATICS FOR ECONOMISTS
(1968).
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the prediction of subsequent events through knowledge of the prob-
ability of one event leading to another event; (2) time series analysis,
which describes the inductive prediction of variables or legal process
characteristics at a future time from variables at a prior time; and (3)
difference equations, which deductively predict an event at a future
time from an event at a prior time. These models are clarified through-
out by legal process illustrations. No methodological knowledge be-
yond simple arithmetic or high school algebra is presupposed. The
only presupposition is that the reader is interested in predicting key
events and reducing delay in the legal system.

I. PRESCRIPTIVE OR OPTIMIZING MODELS

The following prescriptive or optimizing models are primarily con-
cerned with saving time. In that sense they have a normative, prescrip-
tive, or optimizing goal. They also have descriptive or predictive
elements in the sense that they often attempt to describe or predict the
time, if any, that can be saved by alternative procedures.

A. Queueing Theory

1. he Basic Model

Queueing theory uses a set of mathematical models or formulae
which take as their main inputs the number of cases arriving in a sys-
tem per day and the number of days or other time units needed to
process each case. From these inputs and the resulting models and for-
mulae, one can deduce such predictive outputs as the average time
spent in the system and such prescriptive outputs as the methods to
reduce that average time.' For example, if we are concerned with the
legal process from arrest through arraignment in misdemeanor cases in
middle-sized cities, we might collect data for a sample of ten separate
working days. As a result of arrests on four of those days, ten cases per
day arrived in the system, and on the other six days, twenty cases per
day arrived in the system. Thus on the average day, sixteen cases ar-
rived in the system (16 = [(4)(10) + (6)(20)] - 10). This figure repre-
sents the first key input: the arrival rate (A).

Within the same period, eighteen arrestees were given arraignment

4. For a discussion of queueing theory, see J. BYRD, supra note 3, at 198-208; D. GROSS &
C. HARMs, FuNDAmENTALs OF QuEumiNo THEORY (1974); A. LEE, APPLIED QUEUEINO THEORY
(1966); S. RiCmoND, supra note 3, at 405-38; T. SAATY, ELEMENTS OF QUEUEINO THEORY
(1961).
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hearings on each of seven days while twelve cases were similarly ser-
viced on each of three days. Thus on the average day, the system ser-
viced 16.2 cases (16.2 = [(7)(18) + (3)(12)] + 10). This figure represents
the service rate (S), which is the second key input. The service rate (5)
should be distinguished from the service time (Ts), which in this con-
text represents the average amount of time needed for an arraignment
hearing-about 30 minutes. The two figures are related, however, be-
cause a shorter service time will usually result in a higher service rate.
Although a sample of only ten days is probably too small to calculate
an accurate average arrival or service rate, we will assume for the pur-
poses of illustration that those figures (A = 16, S = 16.2) represent the
true averages. From these figures we can deduce or predict an expected
or likely amount of time an average case will spend in the system.
Time in this context includes both waiting time (Le., time spent await-
ing the arraignment hearing) and servicing time (i e., time actually con-
sumed by the arraignment hearing). The formula for calculating the
average time spent in the system is T = 1/(S-A). In the preceding
hypothetical, the average time would be five working days. (T = 1 +
(16.2-16) = 1 - .2 = 5). This formula operates under assumptions that
have been repeatedly validated in case processing based on the distri-
bution around the arrival and service rates. Knowledge of the mathe-
matics supporting these assumptions is not necessary to make use of
this and other queueing formulae. Intuitively, queueing formulae seem
logical. For example, if 16.2 cases are processed on an average day, the
total time formula indicates that an average case takes 1/16.2 days to
process (or six percent of an eight-hour day, which is about thirty min-
utes). The formula also confirms the intuitive assumption that if the
arrival rate (A) is equal to or greater than the service rate (S), an infi-
nitely long backlog would develop and new cases would not be ser-
viced. This phenomenon is reflected in the denominator of the
preceding formula.

2. Variations and Implications

Queueing theory also offers a formula, Tw = T(A/S), which deter-
mines the average waiting time before service begins. This formula
indicates that waiting time equals total time multiplied by the ar-
rival/service ratio.5 Given our hypothetical data for A/and S and the

5. Queueing theory considers time consumed to be a function or effect of the arrival rate
and the service rate. In reality, however, there may be dynamic reciprocal causation; if the arrival
rate declines, time consumed will decline. But if time consumed declines, it may cause more
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previously calculated T, waiting time is 4.9 working days (4.9 =
(5)(16)/ 16.2). Because total time equals waiting time plus servicing
time (T = Tv + Ts), servicing time can be predicted by subtracting 4.9
from 5. This computation reveals that servicing time is approximately
one percent of a working day.

In addition to time consumption formulae, queueing theorists have
developed formulae dealing with backlog. For example, the formula
used to predict the number of cases backlogged in the system is N =
(A/S)/(1-A/S). The size of the backlog varies directly with the arri-
val/service ratio and inversely with the complement of that ratio. In
our hypothetical system, we would expect eighty cases to be backed up
(80 = 16/16.2)/(1-16/16.2). This means that on an average day there
are eighty arrested defendants who have not yet been arraigned. Of
these, one defendant is in the process of being arraigned or serviced
while the remaining seventy-nine are in the waiting line. In other
words, the total backlog (N) equals the backlog being serviced (Nv)
plus the backlog awaiting servicing (NV).6

Other queueing models have been developed in which the outputs
are in the form of probabilities. For example, one formula uses the
average arrival rate to calculate the probability that a specific number
of cases will arrive in the system on a particular day. Another formula
uses the average service rate to calculate the probability of servicing a
specific number of cases on a given day. Still another formula utilizes
both A and S as inputs to yield outputs showing the probable number

people to enter the line, thereby causing the arrival rate to increase at least marginally. If, how-
ever, the arrival rate then increases, this change will cause time consumed to increase, which in
turn is likely to decrease the willingness of people to enter the line (le., decrease the arrival rate)
and thereby decrease the time consumed. If the arrival rate has a positive effect on time consumed
equal to the negative effect that time consumed has on the arrival rate, they would offset each
other and the arrival rate and time consumed would tend to remain in equilibrium. The extent
that the two relations approximate each other is, however, an empirical question.

A dynamic reciprocal causation may exist between the service rate and time consumed: when
the service rate increases, time consumed declines. But this occurrence may cause the processors
to relax their efforts, which may cause the service rate to decline again, offsetting the previous
reduction in time consumed. If time consumption thereby increases as a result of the increase in
the service rate, this change may cause the processors to accelerate their efforts, which means the
service rate increases, the time consumed thus increases, and the cycle continues. Another empiri-
cal question is the extent that the inverse effect of the service rate on time consumed approximates
the strength of the positive effect of time consumed on the service rate.

6. In the same way that T, can be calculated with the formula T, = T (AIS), N, can
be calculated with the formula Nw = N(A/S). The latter formula also yields the same result
(79 = 80 (16/16.2)).

[Vol. 1978:467
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of cases backlogged in the system.7

The preceding models have assumed that the city has only one ar-
raignment court. The basic formulae, however, can be modified for
any number of arraignment courts operating simultaneously or for un-
usual distributions around the average arrival or service rates.3 They
also can be modified to consider: (1) queue discipline, or rules provid-
ing priority servicing of certain kinds of cases; (2) jockeying, or proce-
dures that allow lawyers to choose the court or judge that will hear
their cases; (3) truncating arrivals, or rules that specify the maximum
number of cases or kinds of cases that can be processed; and (4) multi-
ple stages of processing, ie., waiting and processing in the preliminary
hearing, arraignment, and trial stages.9

Queueing formulae are also useful for making reasonably accurate
estimates of reductions in time and backlog that would result from
changes in the average arrival rate, the average service rate, the number
of courts, the system of priorities, and other queueing variables. For
example, we can reduce the initial arrival rate by having the police
resolve more complaints without making arrests. Further, we can re-
duce the arrival rate at the processing or servicing stage by encouraging
more settlements between arrest and arraignment. We can reduce the
service time and thus increase the service rate by having arraignment
hearings follow a more standardized script that avoids unnecessary
matters.' 0 In that regard, if an average two-day trial can be reduced to

7. See S. RiCHMOND, supra note 3.
8. The usual distribution for arrival rates, the Poisson distribution, comprises a few days

that have extremely low arrivals, many days that have low to moderate arrivals, and a few days
that have high arrivals. This distribution is peaked to the left, quickly rising and then gradually
falling. The usual distribution for service rates, the exponential distribution, comprises many days
that have relatively low service rates and a few days that have moderate or high service rates. This
distribution, when plotted, goes continuously in a downward direction.

9. Standard queueing theory formulae assume that the arrival rate and service rate are in-
dependent. In reality, this assumption may not be valid. For example, an increase in the service
rate may encourage those who might otherwise settle out of court to bring their disputes to court.
Thus by speeding the servicing, the arrival rate may increase, thereby offsetting some of the time-
saving benefits of the improved service rate. Similarly, reduction of the arrival rate may en-
courage processors to reduce their individual processing rates. Thus by decreasing the arrivals,
the service rate may decline, thereby offsetting some of the time-saving benefits of the improved
arrival rate. It also follows that a poor service rate may favorably decrease the arrivals, and in-
creasing the arrival rate (La, encouraging more arrivals) may stimulate faster service. The extent
that 4 and S correlate cannot be determined deductively, but only through empirical study of the
collected data.

10. A recent study of delay in the courts indicates that shortening case processing time might
be fruitless because cases with short processing times require almost the same total times as cases
with long processing times. K. Portnoy, Per Curiam Opinions and Appellate Court Delay: A
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one day and there are 500 cases waiting in line, then the 500th case will
be heard 250 working days sooner because of the one day saved per
case. In other words, total time (T) saved equals not just one day (i e.,
the reduction in Ts), but rather the reduction in Ts multiplied by the
number of cases in the waiting line (Nw). The queueing model also
points up the need for more courts, judges, and judge time per year
since T and N are influenced by the availability of processing channels.
Time and backlog can also be reduced through systems of priorities for
particular kinds of cases, by reducing the number of stages in the total
process, and by establishing a central administration that directs cases
through the most efficient paths."

B. Dynamic Programming: Optimum Sequencing

1. Sequencing of Cases

Dynamic programming 12 seeks to minimize the total time consumed
by ordering events in the most efficient sequence. For example, assume
that three cases arrive in a single-court system: case A requires twenty
days through the trial stage, case B requires ten days, and case C re-
quires five days. At first glance, one might conclude that processing
time will be thirty-five days regardless of the order of the cases. The
flaw in that conclusion, however, is that it does not consider that total
time (T)equals waiting time (Tw) plus processing or servicing time. 3 If

Research Note (1978) (unpublished paper available from the author at the Florida State Univer-
sity Political Science Department). One, however, would expect both short and long cases to
require about the same total time because total time equals waiting time plus processing time, and
in some court systems waiting time may be almost 100 percent of the total time. Thus, a relatively
long processing time has little incremental detriment. The amount of waiting time, however, is a
function of the amount of processing time. By reducing an average processing time of two days by
half, the waiting time for cases can also be reduced by half, thereby reducing total time by half.

11. For additional examples of the application of queueing theory to the legal process, see J.
CHAIKEN, T. CRABiLL, L. HOLLIDAY, D. JAQUETTE, M. LAWLESS, & E. QuAD, CRIMINAL JUS-

TICE MODELS: AN OvERvIEW (1975) [hereinafter cited as J. CHAIKEN & T. CRABILL]; J. CHAIKEN
& P. DoRmo*NT, PATROL CAR ALLOCATION MODEL: EXEcuTIV SUMMARY (1975); J. REED, THE
APPLICATION OF OPERATIONS RESEARCH TO COURT DELAY (1973); H. Bohigian, The Founda.
tions and Mathematical Models of Operations Research with Extensions to the Criminal Justice
System 191-209 (1971) (unpublished Ph.D. dissertation). See also H. ZEISEL, supra note 1, which
includes discussion of "Reducing the Trial Time" (Ze., increasing servicing rates), "Increasing
Settlements" (Le., decreasing arrival rates), and "More Judge Time" (Le., increasing the channels
or processors) and is organized in accordance with queueing theory.

12. See J. BYRD, supra note 3, at 139.
13. On dynamic and sequential programming, see K. BAKER, INTRODUCTION TO SEQUENC-

no AND SCHEDULnqG (1974); J. BYRD, supra note 3, at 139-56; R. CONWAY, W. MAXWELL, & L.
MILLER, THEORY OF SCHEDULING (1967); B. GLuss, AN ELEMENTARY INTRODUCTION TO Dy-

NAMIC PROGRAMMING (1972); A. KAUFMAN, GRAPHS, DYNAMIC PROORAMMING, AND FINITE

[Vol. 1978:467
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the cases are processed in inverse order of their length, A will consume
twenty days (T = 0 + 20); B will consume thirty days because it must
wait twenty days for A to be processed (T = 20 + 10); and C will
consume thirty-five days because it must wait thirty days for A and B
to be processed (T = 30 + 5). The total processing time for the three
cases when so sequenced is thus eighty-five days; the average process-
ing time is twenty-eight days per case. The goal of dynamic program-
uing is to develop an optimum order for these three cases and then to
generalize to rules applicable to larger samples and more complex vari-
ations on this basic example. 14

In our three case sample,15 there are six possible sequences, each
yielding a different average processing time. Table 1 indicates that the
most efficient sequence is order 6, which orders the cases from the
shortest to the longest. This sequence reduces average processing time
from twenty-eight to eighteen days. Assuming that the only goal is to
minimize the average time per case, 16 and there are no maximum time
constraints, we could formulate a general rule that cases be processed
in inverse order of their expected length. If, however, we more realisti-
cally provide that no case be allowed to consume more than a certain
amount of time, this sequence would be unworkable because the longer
cases might never be processed. For example, if we specify that no case
should be allowed to take more than thirty days, order 6 is no longer
feasible because case 4 requires thirty-five days and thus violates the
thirty-day maximum constraint. Regardless of the ordering, the total
waiting and servicing times for the case will equal the sum of the serv-
icing times for all of the cases. In our hypothetical, that sum is thirty-
five days; therefore all six orders are infeasible because the last case of

GAMEs (1967); G. NEMHAUSER, INTRODUCTION TO DYNAMIC PROGRAMMING (1966); S. RIcH-
MOND, supra note 3, at 461-80.

14. Dynamic programming may also be used to minimize lateness and total cost. See J.
BYRD, supra note 3, at 152-55.

15. The model assumes that the three cases arrive on the same day.
16. In other contexts, an appropriate goal might be something other than minimizing the

average time spent per case with or without a maximum constraint. For example, in handling jobs
in a business firm, the goal might be to minimize the number of late jobs, the average lateness of
the jobs, the average cost of lateness, the maximum lateness, or the maximum lateness cost. Those
alternative goals are discussed in J. BYRD, supra note 3, at 139-56. Alternative procedures for
achieving one's goals might include: (1) a rule of first come first served, (2) a rule of shortest cases
first where a set of cases arrive during the same week; (3) a rule that gives top priority to the job
that has the earliest due date; or (4) a more complicated business rule that schedules last those jobs
that have the largest ratio between the time required and the lateness consequences.
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TIME-ORIENTED MODELS

each violates the maximum constraint. 7

Compliance with the thirty-day maximum constraint could be
achieved by reducing the number of arrivals, reducing the service time
for some or all of the cases, or adding additional channels or courts."
Table 2 shows the possible orderings when two courts are used to pro-
cess cases. Because there are still three cases, there are six possible
orderings. With the additional court, however, the average time per
case is reduced because two cases can be processed simultaneously with
only one case at the waiting stage. The optimum order now shifts from
order 6, which was optimum without constraints, to order 4 or 5, both
of which satisfy the new thirty-day constraint with the relatively low
average time per case of thirteen days. Because order 4 has a lesser
maximum time (twenty days) than order 5 (twenty-five days), it is the
optimum of the Table 2 orders. From that analysis, we can generalize
that within each court the shorter cases should be heard first unless
exigent circumstances require that longer cases be moved up. 19

The preceding optimum sequencing principles can be applied by
computer programs when the volume of cases is too large to calculate
all the possible permutations. Each new case entering the system can
be analyzed to estimate the amount of trial time required. In criminal
cases, these estimates can be based on a statistical analysis that consid-

17. The shortest-case-first rule should not be considered fallacious merely because it does not
work without maximum constraints. Use of maximum constraints is simply a recognition that one
cannot apply management science or operations research principles to the legal process without
considering constitutional, statutory, and precedential constraints. These constraints sometimes
include speedy trial rules.

The hypothetical constraint could have been changed from 30 to 40 days. This change, how-
ever, would eliminate the possibility of discovering the alternative options queueing theory pro-
vides for satisfying a maximum constraint, which, in the absence of alternative options, would be
violated given the data in Table 1.

18. With one court, judge, or channel, any maximum constraint will either be violated by all
the orders or by none of them. This results because the last case consumes an amount of time
equal to the sum of the servicing times for all the cases being considered. This phenomenon is
apparent in Table I where the last case of each order consumes 35 days. The notion of a maxi-
mum constraint, however, is quite meaningful in the legal process because almost all court systems
have more than one judge. The notion is also meaningful with only one judge; the constraint can
conceivably be satisfied by reducing the arrival rate or increasing the servicing rate.

19. Gillespie, Economic Modeling of Court Services, Work Loads, and Productivity, in Moo-
ELING THE CRIMINAL JUSTICE SYSTEM 175 (S. Nagel ed. 1977); S. Flanders, District Court Studies
Project Interim Report (June 1976) (report to the Federal Judicial Center); USDA Statistical Re-

porting Service, The 1969-70 Federal District Court Time Study (June 1971) (report to the Federal
Judicial Center).
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TABLE 2. WAYS OF ORDERING THREE CASES WITH TWO COURTS

Order 6 3 5 2 4 1

Case Time Case Time Case Time Case Time Case Time Case Time

(days) (days) (days) (days) (days) (days)

Court I

C(5) 5 C(5) 5 B(10) 10 B(10) 10 A(20) 20 A(20) 20

Court 2

B(10) 10 A(20) 20 C (5) 5 A(20) 20 C (5) 5 B(10) 10

A(20) 30 B(10) 30 A(20) 25 C (5) 25 B(10) 15 C (5) 15

SUM = 45 SUM = 55 SUM = 40 SUM = 55 SUM = 40 SUM - 45

AVG. = 15 AVG. - 18 AVG. = 13 AVG. = 18 AVG. 13 AVG. = 15

ers such variables as whether the crime is severe, whether the defendant
has asked for a jury or bench trial, and whether the defendant has a
private counsel or a public defender. In personal injury cases, time
predictions can be made from such variables as the plaintiff's latest set-
tlement demand, the defendant's latest settlement offer, and the kind of
personal injury claimed. Regression equations can be developed by
computerized regression analysis of data based on these and other
variables.

2. Sequencing of Stages

Optimum sequencing of stages of cases seeks to determine the most
efficient order of processing the various separable parts of a case. For
example, optimum sequencing of stages might in a particular case in-
dicate that the liability and damages determinations should be made at
separate trials. Determining liability and damages in one trial would
seem to ensure optimal efficiency. The split trial system, however, can
result in greater time savings than might at first glance be expected.
For example, in a hypothetical sample of 100 personal injury cases,
only about sixty-four will typically result in a judgment for the plain-
tiff, and thus thirty-six cases require only half a trial because they do
not reach the damages question. Furthermore, about thirty-two cases
or half of those in which the defendant is found liable are likely to 'be
settled before the damages trial. If we assume that the average com-
bined trial takes ten days, the separate liability trial seven days, and the
separate damage trial six days, then under the combined system, 100
cases would comsume 1,000 trial days. Under the split trial system,

[Vol. 1978:467
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however, 100 cases might consume only 892 trial days. Of those 892
days, 252 are consumed by the 36 cases in which liability is not estab-
lished (36 x 7); 448 are consumed by the 64 cases in which liability is
established (64 X 7); and 192 are consumed by the 32 cases in which
liability is established and a second hearing rather than a settlement is
needed to determine the damages (32 x 6). The split trial system thus
potentially offers a substantial savings over the combined system.

Other factors must be considered when determining the optimum se-
quence of stages. Under a split trial system, the recovery rate may de-
cline because the jury cannot temper its verdict with a reduced
damages recovery. This may be most apparent in cases involving con-
tributory negligence. But the split trial system provides an unforeseen
time benefit because fewer cases are eligible for the second trial and
many of those cases will be settled between the liability trial and the
damages trial. The split trial system thus may have a substantial effect
on the outcome of a case.2" In analyzing whether this reform should be
adopted, the desirability of this impact should be considered.

A second and more common kind of optimum sequencing is the or-
dering of the stages of a case in relation to the stages of other cases with
the goal of reducing the overall processing time of the cases in the sys-
tem. It typically considers whether and to what extent the early stages
of one case should be processed before the later stages of other cases.
In a single-court system, assume two cases, each of which has a plead-
ing stage and a trial stage. Assume further that pleading for case A
takes one hour (PI), pleading for case B takes two hours (P2), trial for
case A takes three hours (TI), and trial for case B takes four hours
(772). Table 3 shows the possible ways the stages of those cases could
be sequenced without violating the inherent limitation that pleadings
must precede trial. Each order shows the servicing, waiting, and total
times for each stage. The servicing time remains constant regardless of
the order, but the waiting time, which represents the time that a stage of
a case must wait for a stage of another case to be processed, varies. The
optimum sequence, therefore, is the one with the least waiting time.

Table 3 shows that order 1, the optimum sequence, proceeds with all
the stages of case A before proceeding with any of the stages of case B.
Case A is preferred because it is a shorter case. It is also preferable in

20. For a statistical study of a sample of cases comparing the split trial method with inte-
grated trials (producing findings like those described above), see Zeisel & Callahan, Split Trials
and Time Saying: ,A StatisticalAnalyis, 76 HAatv. L. REv. 1606 (1963).
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this simple illustration to complete all the stages of each case without
interruption because this will avoid unnecessary waiting time. These
conclusions assume that the only stages in each case are pleading and
trial. If the parties are not ready to go to trial immediately after plead-
ing, but instead require a preparation for trial stage, it would seem logi-
cal to schedule the case B pleading between the case A pleading and
trial. The case B pleading could then be processed during the case A
preparation stage. This allows the productive use of what would other-
wise be waiting time, thereby reducing total time.

Although it might seem more efficient, even with only two stages, to
interrupt P and TI with P 2 if case -4 had shorter pleadings and a
longer trial than case B, Table 3 reveals that the average time per case
would be minimized by processing them in uninterrupted succession.
If, however, the trial time of case B is shortened so that it is less than
the total time of case A, all stages of case B should be completed before
beginning the processing of case A.

The rule of processing the stages of a given case in uninterrupted
succession applies when using one or more courts, provided each court
is capable of processing cases at both the pleading and trial stages. If
one court specializes in pleadings and a second court specializes in tri-
als, the optimum sequencing requires finding the shortest time unit
among all stages and cases. If, for example, the shortest time unit
among all the stages is the pleading stage of a case, it should be
scheduled first. If the shortest time unit is the trial stage of a case, it
should be scheduled last. After finding the shortest time unit, one looks
for the next shortest and continues to follow the rule that a pleading
unit is heard next to the top while a trial unit is heard next to the bot-
tom. By following these rules, courts might effectively minimize the
average time consumed by each case.21 To avoid the cumbersome task

21. This method, however, would not save time if trial judges have to spend substantial time
familiarizing themselves with cases in which they did not participate in the pleading stage.

For additional examples of dynamic and sequential programming applied to the legal process,
see H. ZEISEL, supra note 1, at 201-05; Hausner, Lane, & Oleson, Automated Scheduling in the
Courts, in OPERATIONS RESEARCH IN LAW ENFORCEMENT, JUSTICE, AND SOCIETAL SECURITY

217 (S. Brounstein & M. Kanrass eds. 1976); H. Bohigian, supra note 11, at 171-90; J. Jennings,
Evaluation of the Manhattan Criminal Court's Master Calendar Project: Phase 1-February 1-
June 30, 1971 (Jan. 1972) (Rand Institute study); R. Nimmer, The System Impact of Criminal
Justice Reforms: Judicial Delay as a Case Study 62-86 (1974) (unpublished thesis); Programming
Methods Inc., Justice: A Judicial System to Increase Court Effectiveness (Apr. 1971) (a system
design study of the Criminal Court of the City of New York).
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of enumerating all possible orders, stage sequencing, like case sequenc-
ing, can be computerized using as its inputs time consumption figures
for the stages based on characteristics of the cases that have been found
to correlate with the amount of time required for each stage.

C. Critical Path Method and Flow Chart Models

1. Critical Path

Critical Path Method (CPM) or Program Evaluation and Review
Technique (PERT) seeks to reduce total time by reducing the time of
those stages that most directly influence it rather than by reducing the
time of all stages. CPM and PERT, therefore, focus on two kinds of
stages: (1) a stage essential to a subsequent stage, and (2) a stage that
requires more time than other stages but is essential to a subsequent
stage. Figure 1 is illustrative. Preparation by the prosecutor and public
defender are usually essential before proceeding to the trial stage. If,
however, the public defender requires an average of three weeks to pre-
pare for trial, while the prosecutor requires only two weeks, the critical
path from pleading to trial is through the lower arrow which represents
preparation by the public defender. Reducing the prosecutor's prepa-
ration time, therefore, would not allow the earlier commencement of
trials, but reducing the public defender's preparation time by providing
him with additional resources would allow this. Note that if we reduce
the public defender's preparation time to less than two weeks, the pros-
ecutor's preparation replaces it as a critical path. 2

Critical path analysis can be expanded to include the entire criminal
justice process from arrest to parole and the civil justice process from
complaint to recovery on the judgment. Some stages of the criminal
and civil justice systems require the completion of two or more proce-
dures as prerequisites to a subsequent stage. Examples of these jointly
converging stages include information gathering by the defense and
prosecutor for pretrial release, and information gathering by the de-
fense, prosecutor, and probation department for post-conviction sen-
tencing.23 The probation department's presentence report normally

22. On critical path method and flow chart modeling, see R. ARCHIBALD & R. VILLORIA,
NETWORK-BASED MANAGEMENT SYSTEMS (PERT/CPM) (1967); 3. BYRD, supra note 3, at 115-38;
H. EVARTS, INTRODUCTION TO PERT (1964); B. HANSEN, PRACTICAL PERT (1964); S. RICH-
MOND, supra note 3, at 481-500; 0. WHITEHOUSE, SYSTEMS ANALYSIS AND SYSTEMs DESIGN
(1973).

23. If one prepares a flow chart from arrest to sentencing showing all the connecting and
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follows the conviction of the defendant. Substantial time, therefore,
might be saved by having the probation department prepare pre-
sentence reports on all defendants before the verdict. Although it may
seem inefficient to prepare reports for the hypothetical thirty percent of
defendants who are not convicted, the cost of preparing these reports
might prove to be less than the cost of following the usual practice of
preparing reports after conviction while the defendant sits in jail. Spe-
cifically, the additional cost of reporting on all defendants would be
approximately .30 of the number of defendants multiplied by the aver-
age cost per report. The additional cost of not reporting on all the de-
fendants includes: (1) the cost of incarcerating those defendants who
subsequently will be released on probation, and (2) the cost to the local
jurisdiction attributable to the delay in sending to prison those defend-
ants who subsequently will be denied probation.

Figure 1 illustrates a hypothetical average preparation time for the
prosecutor and public defender. In practice this data may be calculated
on the basis of three subjective estimates reported by the attorney: (1)
likely preparation time (comparable to the mode in statistical analysis);
(2) an optimistic estimate of preparation time (which occurs about once
in 100 cases); and (3) a pessimistic estimate of preparation time (which
also occurs about once in 100 cases). From these estimates, a mean
time can be computed using the formula: TE (expected time) equals To
(optimistic time) plus four times TL (likely time) plus T, (pessimistic
time), with the sum divided by six. This formula is based on the as-
sumption that although people have difficulty estimating an average
outcome, they can accurately estimate optimistic, modal, and pessimis-
tic figures. The formula is also based on assumptions about the ten-
dency of averages to relate to those figures and the usefulness of those
input figures in PERT-CPM outputs.

converging paths, then the overall critical path would be the combination of all the longest paths
starting from sentencing and working back to arrest. A more sophisticated approach would also
recognize that if one comes to a fork when determining a critical path, one should not automati-
cally choose path A over path B. Instead, look to the sums of all the connecting paths that con-
verge on a stage in determining the alternative path that is critical for reducing the total time
consumed from arrest to sentencing.

We could extend the hypothetical data of Figure 1 to show this kind of flow chart. Unfortu-
nately, the real data available on time consumption at various stages in the criminal justice process
does not deal with such converging matters as the time needed by various participants to prepare
for various stages. Figure 2, which contains real data for connecting paths, but not for converging
paths, illustrates this situation. However, information about their preparation times can be ob-
tained from the participants by examining ifies and other records or by questionnaires and
interviews.

Number 31
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FIGURE 1. A SIMPLE CRITICAL PATH MODEL

Preparation by Prosecutor

2 weeks

Pleading Trial

Preparation by Public
Defender

Entering information about the ordering of the stages and the opti-
mistic, modal, and pessimistic estimates for each stage into a PERT or
CPM computer program yields a variety of useful outputs: (1) estimates
of the date by which each stage is likely to be completed; (2) estimates
of the accumulated time as of each stage; (3) the stages that constitute
the critical path; (4) estimates of the time spent waiting for an adjacent
stage to be completed so that a dependent stage can begin; and (5) the
probability that a subsequent stage will have to wait for a prior stage
that is not on the critical path. These informational outputs can be
helpful in planning both complex and routine cases.24 Such planning,
however, should not encompass all stages on the critical path, but
rather only those that consume the most time or are most subject to
time reduction as indicated by the spread between the optimistic, mo-

24. A variation of PERT analysis measures the time and cost to conduct each activity in the
routine manner and the time and cost to conduct them as expeditiously as possible (ie., crashing).
The cost of crashing in dollars per day or other time unit can then be determined for each activity.
With this information, one can then determine the activities and the extent that those activities are
worth crashing or accelerating. Activities are not worth accelerating when the completion of the
total task would still have to await the completion of other activities. Activities that can be accel-
erated at relatively little cost and, when completed, move the entire job forward, however, are
worth accelerating. See generaly W. GREENWOOD, DECISION THEORY AND INFORMATION SYS-
TEMS (1969).
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dal, and pessimistic estimates. The greater the spread at a given stage,
the greater the probability that the stage may be subject to time reduc-
tion, provided the correlates of that spread across cases, across courts,
or over time can be determined.25

2. Flow Chart Models

Flow chart models, which illustrate the critical path method, rep-
resent the stages of the legal process through a series of rectangles and
connecting arrows. The rectangles indicate the time needed to com-
plete each stage, the interrelationships or flow of the stages, and alter-
native possibilities including the possibility or probability that a stage
will drop out of the system. Flow chart models are a useful visual aid
for understanding general case processing and often suggest ideas for
reducing time. They also can be entered into a computer to show the
output effects of changes in the times, case quantities, stages, or other
inputs.

A simple hypothetical illustrates the usefulness of the flow chart
model. In City A the average felony case takes one hundred days to
complete, twenty days of which involve waiting for a one-day grand
jury proceeding after the preliminary hearing. The flow chart indicates

25. See Nagel, Measuring Unmecenrary Delay in drmnistrative Proceedings: TheActual versus
the Predicted, 3 POLICY ScL 81 (1972).

Closely related to critical path method is the interesting problem of choosing the court that
will minimize time consumption and other costs. For example, suppose a personal injury plaintiff
could choose between the paths leading to a federal court (diversity jurisdiction) or to a state
court. Suppose further that if the plaintiff goes to the federal court, his case will be heard within
one year, and if successful he will collect about $15,000, but there is only a 20 percent chance of
winning. If, on the other hand, he goes to the state court, his case will be heard within two years,
and if successful he will collect $10,000, but he has a 40 percent chance of winning. which path
should he follow?

The expected value of the federal path is $3,000 (La., $15,000 discounted by the .20 probability
of success) without considering the time element, and the expected value of the state path is $4,000
(Le., $10,000 discounted by the .40 probability of success). If, however, we consider that one has
to wait two years for the $10,000 from the state court, its value substantially decreases. More
specifically, the present value of a future amount is calculated by the formula P =/1(+r), where
r is the interest rate that could be obtained by depositing the cash value in a savings account for t
years. If we assume the interest rate is 6 percent then the present value of the state path's $10,000
two years from now is $8,900. If we now discount that present value by the .40 probability of
obtaining it, the expected value of the state case becomes $3,560. Applying the same formula to
the federal path, the present value of its $15,000 award would be $14,151 because $14,151 -
$15,000/(1+.06). If we now discount that present value by the .20 probability of obtaining it, the
expected value of the federal path becomes $2,830, which is still less than the state path, but by a
smaller margin, considering differences in time consumption. We, of course, could have offered a
hypothetical example where considering the time consumption reverses the rank order of the bet-
ter path.
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that elimination of the grand jury proceeding could save twenty-one
days or twenty-one percent of the total time. This falsely assumes,
however, that what replaces grand jury indictment-a formal com-
plaint issued by the prosecutor-requires no further time expenditure.
Another flow chart, which considers the prosecutor's formal complaint,
might show that the defendant waited ten days for the complaint, indi-
cating the savings from replacing the grand jury with the prosecutor
would be eleven days. But the savings probably will be less than eleven
days if the prosecution is overburdened or the cases are more complex
than those previously handled.

Table 4 provides previously unpublished data for constructing a flow
chart (shown in Figure 2) for a nationwide sample of 11,000 state crim-
inal cases compiled in 1961 by the American Bar Foundation. Unlike
most flow chart models, which are based on single-court jurisdictions,
Table 4 shows the average number of days from one event to another
for the subset of the 11,000 cases in which the two events occurred and
information was available. It also shows the standard deviation for
each of these time consumption figures. If the actual figures for the
cases at any given time passage have a normal distribution, approxi-
mately two-thirds should be within one standard deviation of the
mean. For practical purposes the standard deviation as a measure of
spread is most useful for indicating which time passages have the great-
est variation and are thus most subject to having their excessive cases
pushed toward the mean.26 The coefficient of variation, le., the ratio
between the standard deviation and the mean, is a better measure of
this occurrence since one would expect a larger spread where there is a
larger mean.27 This measure shows that on percentage of days saved,
improvement can be made most readily at the arrest to bail release
stage where the coefficient of variation is almost two to one. Many
days can be saved simply because that time passage is the sum of all the
component time passages.

In the flow chart, the nodes or events in the solid rectangles are gen-
erally required events (e.g., in felony cases the required arrest, indict-
ment, arraignment, and either a nontrial disposition or a trial). The

26. The standard deviation is calculated by: (1) summing the time consumption for the cases
at a given passage and dividing by the number of cases, (2) subtracting that mean from the actual
time consumed for each case, (3) squaring those differences, (4) dividing the sum of those squares
by the number of cases, and (5) taking the square root of that quotient.

27. See H. BLALOCK, SocL4,L STATISTICS (1972); J. MUELLER, K. SCHUESSLER, & H.
CosTNER, STATISTICAL REASONING IN SOCIOLOGY (1970).
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TABLE 4. TIME CONSUMPTION AT VARIOUS STAGES IN STATE
CRIMINAL CASES ACROSS THE U.S.

# of Coeffi-
Time Start End Time Cases Mean Standard cient of

Number Node Node Description with Info. Days Deviation Variation

2114 29 31 1.07

25 33 1.32

24 34 1.42

95 96 1.01

409 160 128 .80

61 61 1.00

338 93 69 1.03

1 1 3 Arrest to
counsel

2 2 3 Preliminary
to counsel

3 3 4 Counsel to
bail release

4 1 8 Arrest to
nontrial
disposition

5 1 9 Arrest to
trial begins

6 3 8 Counsel to
nontrial
disposition

7 3 9 Counsel to
trial begins

8 7 8 Arraignment
to nontrial
disposition

9 7 9 Arraignment
to trial
begins

10 1 4 Arrest to
bail release

11 1 2 Arrest to
preliminary
hearing

12 1 7 Arrest to
arraignment

13 6 8 Indictment
to nontrial
disposition

14 6 9 Indictment to
trial begins

507 81 70 .86

22 40 1.82

12 13 1.08

46 60 1.30

71 88 1.24

544 114 101 .89

nodes or events in the dashed rectangles are optional events because
many of the cases do not require bail release, preliminary hearing, or
counsel. The numbers on the arrows indicate the average time con-
sumed between events. The numbers in the rectangles indicate the
event number arranged in the usual chronological order. Time con-

48 57 1.19
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sumption figures without asterisks are calculated from the raw data
supplied by the American Bar Foundation.2" This data provides infor-
mation for the fourteen time passages or variables in Table 4 and Fig-
ure 2. Time consumption figures with asterisks (X times) are
determined by subtracting the shorter time (S time) from the longer
time (L time), where X + S should equal L when there is perfect con-
sistency in the data. For example, arrest to indictment is calculated at
twenty-four days for nontrial disposition because the period from arrest
to nontrial disposition is ninety-five days, and from indictment to non-
trial disposition, seventy-one days. The numbers are consistent be-
cause certain events are optional and information is missing from some
cases. It thus takes a composite average of twenty-nine days from ar-
rest to counsel with or without a preliminary hearing, but an average of
thirty-seven days (12+25) from arrest to counsel in those cases that had
a preliminary hearing.

The flow chart shows that trial disposition takes 160 days while non-
trial disposition takes ninety-five days. This indicates that each case in
which a trial could be eliminated would save sixty-five days. The flow
chart also shows that a defendant who is released on bail usually en-
counters a rather long three-week waiting period between arrest and
the securing of defense counsel. Further, the period between indict-
ment and arraignment consumes almost a month, although during this
time important plea bargaining may occur. Arrest to indictment tends
to take about a month in nontrial cases followed by more than two
months for nontrial disposition; in trial cases, arrest to indictment tends
to take one and a half months followed by three months awaiting
trial.29

Processed data like that shown in Table 4 and Figure 2 has been
generated from the raw data in the American Bar Foundation files for
six different kinds of crime: armed robbery, aggravated assault, grand
larceny, rape, burglary, and auto theft. Separate tables and figures also
have been generated for cases from metropolitan counties with more
than 400,000 population, urban counties with populations between
100,000 and 400,000, and rural counties with populations under
100,000. A separate table and figure is available for each of the fifty
states. This data may prove especially useful for determining the pro-

28. For a description of the data-set, see L. SILVERSTEIN & S. NAGEL, AMERICAN BAR FouN-
DATION: STATE CRIMINAL COURT CASES, (ICPR 1974). The same IBM card was analyzed in
Nagel, Dsparities in Criminal Procedure, 14 U.C.L.A. L. REv. 1272 (1967).

29. These time estimates are derived from Table 4 and Figure 2, which in turn are derived
from the data-set cited in note 28 supra.
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cedures, demographic characteristics, and governmental characteristics
that correlate with high or low time consumption at various stages in
the criminal justice process .3  The data is still being analyzed for this
purpose; when more detailed data is available, more complex flow
charts can be developed. Variations include showing average time con-
sumption for each passage, measures of spread or distribution, optimis-
tic or desired time consumption, the proportion of cases that move
from one event to another when there is provision for branching or
dropping out, and the dollar cost of each event or time passage to the
legal system or the parties. In addition to rectangles and arrows, one
can use a great variety of geometric forms to show: (1) events or nodes
that begin or end the process; (2) time passages that always occur or
that occur with given probabilities; and (3) queueing, critical path, and
other information. This mass of information can then be used as an
input into a computerized program to provide a variety of outputs
showing how the numbers change as the volume of cases entering the
system or the proportion of cases that take one turn rather than an-
other at a branching point changes.

D. Optimum Level, Mix, and Choice Anaysis

1. Optimum LevelAnalysis

Queueing theory indicates that cases can be processed faster if we
decrease arrivals, increase the servicing rate, and increase the number
of processors. This is not meant to imply that we should decrease arriv-
als to zero or increase the servicing rate or number of processors to the
point where time consumption becomes virtually zero. On the con-
trary, the speed-up costs may be so great that it is better to keep the

30. The more detailed versions of Table 4 and Figure 2 are available from the senior author
of this article upon request

31. This analysis is closely related to Markov chain analysis. See note 41 infra and accompa-
nying text. Additional applications of flow chart modeling to legal process include J. CHAIKEN &
T. CRAnL L, supra note 11, BluImstein, A Model to Aid in Planningfor the Total Criminal Justice
System, in QUANTITATIVE TooLs FOR CRIMINAL JUSTICE PLANNING 129 (L. Oberlander ed.
1975); Navarro & Taylor, Data Analyses and Simulation of a Court System for the Processing of
Criminal Caser, in THE PRESIDENT'S COMMISSION ON LAW ENFORCEMENT AND ADMINISTRA-

TION OF JUSTICE, TASK FORCE REPORT- SCIENCE AND TECHNOLOGY (1967); Cassidy, A Systems
Approach to Planning and Evaluation in Criminal Justice Systems, 9 SocIo-ECON. PLAN. SCI. 301
(1975); W. Biles, A Simulation Study of Delay Mechanisms in Criminal Courts (unpublished
paper presented at the meeting of the Operations Research Society of America, at New Orleans,
La., 1972); G. Hogg, R. DeVor, & M. Handwerker, Analysis of Criminal Justice Systems via
Stochastic Network Simulation (unpublished paper presented at the Workshop on Operations
Research in the Criminal Justice System, at San Diego, Cal., 1973).
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delay. Optimum level analysis of time consumption reveals the level of
delay that will minimize the sum of the delay costs (YI) and the speed-
up costs (y2).32

Figure 3 in graphic form shows optimum level analysis for a hypo-
thetical metropolitan court system. To fully apply the analysis we need
to develop an equation showing the relation between delay costs and
time consumed. For the sake of simplicity we will hypothesize that
each extra day consumed in completing a criminal case costs the system
about $7 for each jailed defendant who receives an acquittal, dismissal,
or probation; $2 represents wasted jail maintenance costs, and $5 repre-
sents lost national product due to defendant's nonproductivity. The $2
is calculated by approximating a cost of $6 per day to maintain a de-
fendant in jail, noting that one-third of the defendants receive nonjail
dispositions upon trial. The $5 is calculated by approximating that a
defendant in this metropolitan area can earn about $15 per day when
not in jail, and that approximately one-third of the defendants would
not be in jail if the system could process their acquitted or dismissed
cases sooner. There might also be a cost of $3 per day for each released
defendant. This represents waste generated by the release of those who
will be jailed when they are eventually tried and convicted but who
during the delay commit a crime or must be rearrested for failure to
appear in court. The $3 figure is determined by calculating: (1) the
crime-committing cost or the rearresting cost for the average released
defendant, (2) multiplied by the low probability of crime-commission
or rearrest, (3) multiplied by the moderate probability of conviction
and incarceration if the case were to come to disposition, and (4) di-
vided by the number of days released. If half the arrested defendants
are jailed and half are released, the $7 delay cost per day per jailed
defendant is $3.50 per day per arrested defendant, and the $3 delay cost
per day per released defendant is $1.50 per day per arrested defendant.
Thus the total delay cost per day per case would be $5 ($3.50+$1.50).
If this is a constant figure, the delay cost (Y I) would equal $5 times T
days, or Y1=$5 (T).

Since the likelihood of crime commission and the need for rearrest
increase as delay increases, the relation between Y, and T might be
better expressed by an equation of the form Y, = $5(T).2 This equation

32. On optimum level analysis, see M. BRENNAN, supra note 3, at 111-92; J. BYRD, supra note

3, at 183-98; S. RICHMOND, supra note 3, at 87-126; J. SHOCKLEY, THE BRIF CALCuLUS: WrrI

APPLICATIONS IN THE SOCIAL SCIENCES (1971).
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FIGURE 3. OPTIMUM LEVEL ANALYSIS APPLIED
TO TIME CONSUMPTION

1= $10

Total Costs
Y= Yl+ Y"2

Speed-up Costs
Y2 = $165,0001(7)

Delay Costs
Y, = $5 (T)2

0 10 20 30 40 50

Time Consumed in Days Per Average Case (T)

indicates that when T is one day, Y' is $5; but when T is X days, Yj is
not $5 times X, but rather Y" expands at an increasing rate. More spe-
cifically, as Trises 1%, Y1 rises 2%. We can determine the values of the
multiplier and exponent of T by performing a log-linear regression
analysis provided that data is available that shows: (1) the amount of
time each case consumed; (2) the approximate cost of each case in
terms of jail maintenance and lost national product for those held and
crime-committing and rearresting costs for those released; and (3) the
proportion or probability of cases in which nonjail sentences were im-
posed and the proportion of crime commission and rearrest of released
defendants. The more time consumed the higher the delay costs be-
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come, possibly at an increasing rate. The more we rush cases to a dis-
position, however, the greater the speed-up costs might be. These costs
are predominantly the monetary cost of hiring additional personnel or
introducing new facilities and procedures.

Suppose that either through deductive queueing theory or the compi-
lation of empirical data we find that with twenty judges an average case
takes seventy-five days, with sixty judges, twenty-five days, and with
eighty judges, nineteen days. We can assume that with no judges the
number of days would rise to infinity. Conversely, it would require an
infinite number of judges to reduce the number of days to zero.

The speed-up costs curve shown in Figure 3 incorporates the preced-
ing data and assumptions. A curve of this kind can be expressed by the
equation J=a/T, where J represents the number of judges, and T rep-
resents time in days per average case. If J=a/T, then T=a/J. The a in
the former equation represents the number of judges needed to reduce
time to one day per case (ie., T=1) while the a in the latter equation
represents the number of days consumed when there is only one judge
(i.e., 1=1). From the preceding data and a computerized regression
analysis we can determine that a=1500. According to our data, this
means that J=1500/T and T=1500/J.

Instead of thinking in terms of the relation between the number of
judges and the number of days consumed, it would be more practical to
think in terms of the cost of judges and the number of days consumed.
If one judge costs $40,000 per year, the daily cost is $110. The equation
J=1500/T thus should be changed to Y2= $165,000/T. Y 2 represents
the speed-up costs or the additional judge costs and the $165,000 is
simply $110 times the previous a (scale coefficient) of 1500, which
shows the scale has been increased by $110 per judge per day. The
equation Y2= $165,000/T is the algebraic equivalent of the equation
shown in Figure 3, ie., Y2= 165,000(T) - '.

Given the relation between delay costs and time consumed of Y 2=
$5 (T) 2 and the relation between speed-up costs and time consumed of
Y 1= $165,000(T)- ', the relation between total costs (Y) and time con-
sumed is Y= $5(')2+ $165,000(T)-1. We now can calculate the opti-
mum level of time consumed, i e., the value of T where the total cost
curve hits bottom. This calculation recognizes that the total cost curve
has a negative slope before it hits bottom, a positive slope after it hits
bottom, and a zero slope when it bottoms out. It, therefore, is necessary
to know the slope of Y to T. We then can set that slope at zero and
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solve for T.
In elementary calculus, one learns that in an equation of the form Y

= aXb2 the slope of Y to X is baXb- l. Accordingly, in our total cost
equation the slope of Y to T is (2) ($5) (T)2-1+ (-1) ($165,000)
(T)" - . If we set that expression at zero and solve for T, we get
$l0(T)-$l65,000/(T')2= 0, or 7' = ($16,500) .3 , which means T = 25
days where the total costs hit bottom. This result indicates that twenty-
five days or slightly less than one month is the optimum level of time
consumption to minimize the sum of the delay and speed-up costs.
Furthermore, the optimum number of judges is sixty since J = 1500/T,
or 60 = 1500/25. Our court system thus could minimize its total costs
with about sixty full-time judges.

This optimum level analysis can be made more complex by recogniz-
ing that speed-up costs (Y2) can only be indicated accurately as a com-
bination of the cost of judges, prosecutors, public defenders, and other
miscellaneous court expenses. The methodology, however, is similar:
(1) obtaining an empirical equation that relates speed-up and delay
costs to time, (2) finding the slope of the sum of these two equations, (3)
setting that slope at zero and solving for T to determine the optimum
number of days per average case for minimizing total costs, and (4)
thereby indirectly determining the optimum number of judges, prose-
cutors, public defenders, and other miscellaneous court expenses.33

2. Optimum Mix Analysis

Queueing theory reveals that we can process cases faster if we de-
crease arrivals and increase the service .rate and number of processors.
Focusing first on the number of processors, we might conclude that
adding more judges, prosecutors, and public defenders would solve the
time consumption problem. The previous section, however, demon-
strated that to reduce time consumption to a level approaching zero
might require so many judges that the cure becomes more expensive
than the problem. We therefore calculated the level of judges that
would optimize the sum of the delay and judge costs. A similar analy-

33. For additional examples of optimum level analysis applied to delay reduction and other
aspects of the legal process, see S. NAGEL & M. NEEF, LEGAL POLICY ANALYSIS: FINDING AN
OPTIMUM LEvEL OR Mix (1977); S. NAGEL, P. WicE, & M. NEEF, Too MUCH OR Too LITrLE
POLICY: THE EXAMPLE OF PRETRIAL RELEASE (1977); H. ZEiSEL, supra note 1, at 169-220; Phillips
& Voety, An Economic Basisfor the Deinition and ControlofCrime, in MODELING THE CRIMINAL
JUSTICE SYSTEM 89 (S. Nagel ed. 1977); Merrill & Schrage, Efficient Use of Jurors:.A Field Study
andSimulation Model ofa Court System, 1969 WASH. U.L.Q. 151; G. Munstermann & W. Pabst,
Operating an Efficient Jury System (unpublished paper presented at the International Meeting of
the Institute of Management Sciences, 1975).
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sis could determine the optimum level of lawyers in the prosecutor's or
the public defender's offices. Performing three separate optimum level
analyses, however, would be inefficient because the determination of
the optimum level for each of these activities requires consideration of
the other activities. A more efficient approach is to perform an opti-
mum mix analysis.'

This kind of analysis allocates a given budget among judges, prose-
cutors, and defense counsel with the goal of minimizing time consump-
tion. Suppose an optimum level analysis reveals the optimum level of
expenditure is $700,000 for judges, $400,000 for prosecutors, and
$200,000 for defense counsel. If the total budget is only $1,000,000, it
would be quite inefficient to blindly slash each activity by $100,000. 35

It would also be inefficient to allocate the reduced budget in the same
proportions as the preceding budget. Either method of bringing ex-
penditures within the total budget fails to consider the marginal rates of
return on each activity. By taking that perspective, we can arrive at a
meaningful optimum mix analysis.

In our hypothetical court system, we previously determined that the
relation between time consumed and the number of judges is T =
1500/J. Given that the cost of a judge's salary is $40,000 per year, the
relation between time consumed and the cost of judges is T =
165,000/$J, where $J represents dollars spent on the judiciary per day.
Thus, if $400,000/365, or $1,096, is spent on ten judges per day, the
equation indicates the average case will consume 150 days
(165,000/1096 = 150). Using a similar analysis, we might determine
that the relation between time consumed and the number of prosecu-
tors is T = 1200/P. This result indicates that if there is only one prose-
cutor in our court system, cases would average 1200 days-ignoring for
the moment the number of judges and defense counsel. If prosecutors
are paid $30,000 per year, the cost equation becomes T = 98,400/$P,

34. On optimum mix analysis, see J. BYRD, supra note 3, at 85-114; P. KOTLER, MARKETING
DECISION MAKING: A MODEL BUILDING APPROACH (1971); R. LLEWELLYN, LINEAR PROGRAM-
,MING (1963); C. MCMILLAN, MATHEMATICAL PROGRAMMING (1970); S. RIcHMoND, supra note 3,

at 314-404.
35. It would be inefficient to reduce each of the three activities by $100,000 to bring the

$1,300,000 down to the available $1,000,000 because the marginal rate of return may differ sub-
stantially for each activity. For example, if an extra dollar given to judges produces a greater
saving of time than an extra dollar given to prosecutors or defense counsel, then we would not
want to take equally from each of the three activities, but rather would take more from the alloca-
tion to prosecutors and defense counsel Likewise, it would be inefficient to reduce each activity in
proportion to the size of its separate optimum budget without considering the marginal rates of
return for an extra dollar spent or taken away for each activity relative to the other activities.
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where $P represents dollars spent on prosecution ((1200) (30,000)/365
- 98,400). A similar analysis for public defenders might reveal an
equation of T = 1000/D. If they are paid $20,000 per year, the third
equation becomes T = 55,000/$D because (1000) (20,000)/365 =
55,000.

The judicial equation- T = 165,000/$J---can also be written as T =
165,000($Jf)- '. This reveals that the slope or marginal rate of T to $J is
- 165,000($J) - 2, which follows from the related equation of Y = all,

where the slope of Y to X is baXb- 1 Similarly, the slope of T to $P is
-98,400($P)-2 and the slope of T to $D is -55,000($D)-2. With this in-
formation we can solve for $.J, $P, and $D in a set of three simultane-
ous equations to allocate our $1,000,000 budget optimally:

-165,000($J)-2 = -98,400($P)-2
-98,400($P)-2 -55,000($D)-2
$J+$P+$D=$1,000,000

By solving for the three unknowns we are equalizing the marginal rates
of return across the three activities so that nothing can be gained by
shifting dollars among activities. Simultaneously, spending does not
exceed the total budget.

A defect in the preceding analysis is that it fails to consider the over-
lapping effect of the time consumed by judges, prosecutors, and defense
attorneys. We need an equation that provides a good fit to our data
and shows the average time consumed for various combinations of
judges, prosecutors, and defense counsel. This equation would show
the time consumed when there are different numbers and combinations
of judges, prosecutors, and public defenders. Placing this data into a
log-linear regression analysis would generate an equation of the form
T' - a($J)b l ($pb2 ($D/'3 . Applying the same rule for finding the
slope of Y to X, this equation indicates the slope of T to $1 is (b 1)
(a)($P) b2 ($D)b 3 [$]]bl-1. Accordingly, the slope of T to $P is
(b 2)(a)($J)bl ($D)b3 [$p]b2-1, and the slope of Tto $1) is (b 3)(a)($J) bl

($P)b2 [$D]b3-1. With this new information, we can more meaning-
fully determine an optimum mix among $1, $P, and $D by setting the
three slopes equal to each other in the first two equations, setting the
sum of the three unknowns equal to $1,000,000 in the third equation,
and solving for the three unknowns. The multivariate approach is ac-
tually simpler because it shows the optimum mix procedure and then
allocates to each i activity in accordance with the equation biG/(b1 +
b2 + b3), where bi is the elasticity coefficient or exponent of activity i,
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and G is the total available for allocation.36

Optimum mix analysis can also determine the maximum average
time consumption that the system can tolerate and the minimum total
expenditures for the three activities to achieve that time consumption.
In other words, optimum mix analysis can include determining the op-
timum mix that will minimize expenditures subject to a maximum time
constraint or that will minimize time subject to a maximum expendi-
ture constraint. The expenditure minimization approach requires solv-
ing for $J, $P, and $D in the following equations by using the slopes
that do not consider the overlapping interaction among the activities:

- 165,000($) -2= -98,400($P)-2

-98,400($P)- 2= -55,000($D) -2

165,000/$J+98,400/$P+55,000/$D= 120
The first two equations result in an optimum mix in which each activ-

ity is given the dollar amount that at those three points equalizes the
marginal rates of return. The third equation indicates that the sum of
the three separate time consumptions should be less than 120 days, if
that is the maximum time we are willing to tolerate for the average
case. A more meaningful third equation would be in the form
a($J)bl($P)b2($D)b3 = 120. If we use the more meaningful mul-
tivariate equation to express the maximum time constraint, we should
also use the more meaningful slopes that are based on that equation in
the first two equations. Wherever a $J, $P, or $D appears we can also
substitute $J + M, $P + M2, and $D + M3, where M represents the
minimum amount to be allocated to the activity before the remaining
dollars are allocated in accordance with the marginal rates of return. 7

36. As an alternative to inductive processing of data at various points in time showing the
number of days consumed for various combinations of judges, prosecutors, and public defenders
to obtain the parameters for a multivariate regression equation, one could in part deductively
reason the interrelations between changes in the budgets ofjudges, prosecutors, and defense attor-
neys. This partially deductive approach is used in Noam, The Criminal Justice System" An Eco-
nomic Model, in MODELING THE CRIMINAL JUSTICE SYSTEM 41 (S. Nagel ed. 1977). For example,
through a chain of deductions combined with empirical data from the District of Columbia,
Noam finds that if an extra $100 is allocated to the judge's budget, $I10 must be allocated to the
prosecutor's budget to maintain the existing amount of trials per judge per time period. In other
words, 10 percent more prosecutors would be needed to keep the increased pool ofjudges as busy
as the previous pooL The multivariate regression equation approach determines the required in-
crease or decrease in SP for a $100 increase in $Wby simply solving for $P in the equation when:
(1) Tand $D are set like the previous Tand SD, (2) the a's and b's are those from the previous
computerized regression analysis, and (3) $J is increased by $100.

37. One could arrive at the minimum figure for each activity by analyzing data from many
court systems and finding the minimum number of dollars spent on judging, prosecuting, and
defending cases. One could then multiply these figures by the estimated case quantity for the next
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The optimum allocation can also be based on a composite goal in
which delay reduction is just one of the variables to be optimized. 3

3. Optimum Choice Analysis

Both optimum level and optimum mix analyses require working with
an optimizing variable that has a continuum of categories similar to
our monetary system. Optimum choice analysis, in contrast, uses a va-
riable that has discrete categories such as yes-no or do-don't. This
analysis might be valuable in analyzing what judges, prosecutors, and
defense counsel should do to achieve settlements and reduce service
time and average time consumed per case.39

Optimum choice analysis operates on the assumption that when indi-
viduals choose an action they are implying that they expect the benefits
minus the costs of the chosen action to be greater than the benefits mi-
nus the costs of the rejected actions. The expected benefits equal the
benefits to be received from an action discounted or multiplied by the
probability that the event upon which the benefits are contingent will
occur. The expected costs equal the costs of an action discounted by
the probability that contingent events will occur.

Figure 4 represents the general decision theory often involved in op-
timum choice analysis. It shows prosecutors how to accelerate slow
and difficult cases so that they will not exceed a maximum time thresh-
old. These methods include: increasing the benefits and decreasing the

year of the court system to arrive at the three minimums. The minimum figures could also be
found by taking the lowest monetary allocation each activity received during the year or by asking
knowledgeable people to estimate the minimum cost of each activity and averaging their
responses.

Note, however, that each division will likely receive more than the minimum if: (1) the court
system spends its total budget, (2) the sum of the minimums is less than the total budget, (3) each
activity has a favorable marginal rate of return because increased expenditures resulted in time
reduction, and (4) the reduction benefits tend to taper offmaking it efficient to switch expenditures
from the most generally efficient activity to a less efficient activity when a substantial decrease in
benefits occurs. In other words, if assumptions 1, 2, and 3 are met, then the most efficient alloca-
tion, after satisfying the minimums, is to allocate the remainders to the activities in proportion to
their exponents in an equation of the form ($j)bl ($p)b2 ($D) b3 - 120.

38. For additional examples of optimum mix analysis applied to the legal process, see W.
HIRSCH, THE ECONOMICS OF STATE AND LOCAL GOVERNMENT 217-54 (1970); S. NAGEL, MINI-
MIZING COSTS AND MAXIMIZING BENEFITS IN PROVIDING LEGAL SERVICES TO THE POOR (1973);

D. SHOUP & S. MEHAY, PROGRAM BUDGETING FOR URBAN POLICE SERVICES (1971).
39. On optimum choice analysis, see R. BEHN & J. VAuPEL, ANALYTICAL THINKING FOR

Busy DECISION MAKERS (1978); R. MACK, PLANNING ON UNCERTAINTY: DECISION MAKING IN

BUSINESS AND GOVERNMENT ADMINISTRATION (1971); H. RAIFFA, DECISION ANALYSIS: INTRO-

DUCTORY LECTURES ON CHOICES UNDER UNCERTAINTY (1968); S. RICHMOND, supra note 3, at
301-60.
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costs of making time-saving decisions; decreasing the benefits and in-
creasing the costs of making time-lengthening decisions; and increasing
or decreasing the probabilities of relevant contingent events. To

FIGURE 4. OPTIMUM CHOICE ANALYSIS APPLIED TO TIME CONSUMPTION

ALTERNATIVE OCCURRENCES

Being Penalized Not Being Penalized
for Lengthening for Lengthening

Time (P) Time (l-P) BENEFITS
MINUS COSTS

W Time-Saving
> Decision (S)
< 0

U

Q Time-Lengthen-
< ing Decision (L)

Bs- Cs

(BL)(1-P) - (C)(P)

Abbreviations: P = probability of being penalized. B = benefits. C = costs.
S = time-saving decision. L = time-lengthening decision.

To increase the likelihood that prosecutors will make time-saving decisions:

i. Increase the benefits of making time-saving decisions (Ze., increase Bs).

For example, reward prosecutors with salary increases and promotions for reducing the aver-
age time consumption per case.

2. Decrease the costs of making time-saving decisions (Le, decrease Cs).

For example, establish a computerized system that informs prosecutors of actual and pre-
dicted times at various stages for all cases to minimize the problems of keeping track of cases
and to provide more investigative and preparation resources.

3. Increase the costs incurred of making time-lengthening decisions (ie., increase CL).

For example, provide under the speedy trial rules for absolute discharge of defendants
whose cases extend beyond the time limit.

4. Decrease the benefits of making time-lengthening decisions (Ze, decrease BL).

For example, increase releases on recognizance so that lengthening the pretrial time will not
make the jailed defendant more vulnerable to pleading guilty.

5. Raise the probability that the decisionmaker will be penalized for lengthening time (Le, in-

crease P).

For example, allow fewer exceptions to the speedy trial rules.

Bs Cs

Benefits from S Costs from S

CL BL

Costs from L Benefits from L
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encourage favorable time consumption decisions, prosecutors can be
given monetary rewards (to increase the benefits) and work-saving re-
sources (to decrease the costs). An alternative method of encouraging
favorable time consumption decisions is to punish prosecutors by pro-
viding for an absolute discharge of defendants whose prosecution has
been excessively delayed or by depriving prosecutors of the plea bar-
gaining benefits of lengthy pretrial incarceration. These devices may
incur substantial speed-up costs, which may outweigh the delay costs,
but it stimulates speculation about how the system can influence deci-
sionmakers to make time-saving decisions.

A similar optimum choice analysis could be applied to the decisions
of public defenders or private defense attorneys. The suggestions for
encouraging time-saving decisions in these contexts may, however, con-
ffict with the suggestions applicable to the prosecutor. For example, we
might recommend more pretrial release to decrease the benefit the
prosecutor receives by holding a defendant in jail, which facilitates ob-
taining a guilty plea. We might, however, recommend less pretrial re-
lease to increase the cost to the defendant of delaying his case. We
must resolve this conflict on the basis of criteria other than time-sav-
ings. This analysis also stimulates benefit-cost suggestions applicable
to the defense that do not conflict with the previous suggestions ap-
plicable to the prosecution. For example, providing additional mone-
tary rewards and resources to public defenders does not conflict with
the suggestions for improving the prosecutor's efficiency unless there is
a fixed quantity of resources in the system.

Judicial decisions affecting time consumption also are subject to opti-
mum choice analysis. For example, judges now incur virtually no per-
sonal costs by granting repeated continuances or making other delaying
decisions. If, however, the system kept public records of the length of
time each judge takes to process various cases, this visibility might
cause slow judges to decrease their time delaying decisions rather than
incur the cost of adverse peer pressure or publicity. Similar records of
prosecutors and public defenders in a court system or across court sys-
tems can also be kept.40

40. For additional examples of choice theory applied to the legal process, see S. NAGEL & M.
NE"F, DECISION THEORY AND THE LEGAL PROcEss (1978); Stover & Brown, Reducing Rule Viola.
lions by Police, Judges, and Corrections Ofcia, in MODELING THE CRIMNWAL JUSTICE SYSTEM
297 (S. Nagel ed. 1977); Nagel, Neef, & Schramm, Decision Theory and Pretrial Release Decision in
Criminal Cases, 31 U. MIAmm L. REV. 1433 (1977).
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II. DESCRIPTrVE OR PREDICTIVE MODELS

The following descriptive or predictive time-oriented models prima-
rily predict future consequences from changed procedures or variables
that are not necessarily related to time reduction. They are time-ori-
ented models only in the sense that they forecast future events on the
assumption that we can not prescribe methods to reduce delay unless
we can predict those events. Like optimizing models, which have pre-
dictive aspects, predictive models often provide essential inputs for pre-
scription or optimization. As before, these models will be illustrated
with legal process examples.

A. Markov Chain Analysis

Markov chain analysis predicts subsequent events by determining
the probability that one event will follow another. A simple example is
illustrative: If we know that sixty percent of the convicted defendants in
a court system are imprisoned and forty percent receive probation, we
can roughly predict the effect of increasing convictions from 200 to 300
per year. Specifically, before the increase the prison caseload was 120
per year (.60 x 200), and the probation caseload was eighty cases per
year (.40 X 200); after the increase the prison caseload probably will be
180 cases per year (.60 X 300), and the probation caseload, 120 cases
per year (.40 x 300). This simple example would be much more inter-
esting if it were part of a chain of branching events in which a change
in an early event has a domino effect on the branch events.41 The ap-
plication of Markov chain analysis to the preceding illustration allows
prediction of the effects of the conviction rate increase on those branch
events.

Figure 5 illustrates the use of Markov chain analysis to predict the
effect on a public defender's caseload of a change in the probability
that a defendant will be held in jail pending trial. In this example of
100 defendants entering the system, ten percent were released on their
own recognizance, thirty percent were released on bond, and sixty per-
cent were held in jail pending trial. Markov chain analysis reveals the
net increase or decrease in the public defender's caseload if the
probabilities are changed respectively to .40, .20, and .40 (e.g., as a re-

41. On Markov chain analysis, see D. ISAACSON & R. MADSEN, MARKOV CHAINS THEORY

AND APPLICATIONS (1975); J. KEmENY & J. SNELL, FINITE MARKov CHAINS (1960); S. RICH-
moND, supra note 3, at 439-60, Ulmer, Stochastic Process Models in PoliticalAnalysi, in MATHE-

MATICAL APPLICATIONS IN POLITICAL SCIENCE (J. Heradon & J. Bernd eds. 1971).
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suit of intervening bail reform). To be accurate, the Markov statistician
first must determine the probability that the defendant will plead not
guilty and, for those defendants who plead not guilty, the probability
that the court will appoint a public defender to represent them.

The hypothetical data indicates that defendants in jail pending trial
are more likely to plead guilty and that jailed defendants (who plead
not guilty) are more likely to be indigent and thus eligible for a public
defender. Among released defendants, those who post bond are less
likely to qualify for a court appointed public defender than those re-
leased on their own recognizance (ROR). Further, for the purpose of
this hypothetical we assume that approximately half of the ROR cases
involve middle-class defendants who are ineligible for public defender
representation and half involve indigent defendants who are eligible.

The analysis simply requires the allocation of the 100 cases in ac-
cordance with the first tier of probabilities to the second column of
events; then allocating this outcome with the second tier of probabili-
ties to the third column of events; and then allocating this outcome with
the third tier of probabilities to the fourth column of events. The last
step in the analysis requires summing the number of cases allocated to
the public defender in the various rows of the fourth column of events
to determine the total public defender caseload. The same methodol-
ogy is applied to the "before" probabilities and the "after" probabili-
ties. This indicates that for the 100 cases the predicted "before"
caseload is twenty-five and one-half to the public defender and the pre-
dicted "after" caseload is thirty and one-half, resulting in an increase of
nineteen percent in the public defender's caseload. If the public de-
fender's office is to continue to assign the same caseload per attorney, it
should increase hiring by nineteen percent. 42

The falling dominoes approach of Markov chain analysis can be
helpful even when probabilities are unavailable, provided that we

42. The preceding analysis assumed that the only percentages or probabilities undergoing
change are the percentages of cases involving release on recognizance, release on bond, and jail
detention. In some situations a change in the percentages on one tier can affect the percentages on
another tier as well as the quantity of cases. For example, after bail reform only the relatively
poor risks would remain in jail. They may be less likely to plead guilty at a .70 rate because they
may be more accustomed to jail and thus are less vulnerable to the prosecutor's offers. On the
other hand, they may be more likely to be convicted if their cases go to trial, suffering less stigma
than from pleading guilty, and thus are more vulnerable to the prosecutor's offers. These two
considerations allow us to reasonably assume the .70 guilty pleading rate for defendants injail will
remain after bail reform.
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know the effect on a subsequent event of a change in a previous event.
The relation between increased pretrial release rates and the size of the
jail population is an excellent example of how the analysis of a chain of
events can provide insights that might otherwise be missed. Using a
simple causal analysis, one might logically conclude that if pretrial re-
lease rates are increased, pretrial detention population will decrease.
Chain analysis reveals, however, that this conclusion is not necessarily
correct. Figure 6 represents the relevant events that might occur as a
result of increasing the pretrial release rate. An increase in the pretrial
release rate will likely result in a decrease in guilty pleas because many
defendants who plead guilty do so in return for a prosecutor's promise
to recommend a sentence equal to time served or to recommend proba-
tion. Jailed defendants who demand a trial may have to be incarcer-
ated for a longer period before trial; they may still lose their case and
have to serve additional time. If many defendants who were formerly
incarcerated pending trial are now released, they will be less vulnerable
to prosecutorial pressure to plead guilty. A decrease in guilty pleas will
likely result in a corresponding increase in trials because pleas of not
guilty are essentially pleas for a trial.43 An increase in trials will likely
result in increased delay. Queueing models and common sense confirm
these relationships. If, however, jailed defendants must wait longer for
a trial, the initial benefits of a decreased jail population will, of course,
be somewhat neutralized.

Deductive models explain the four relations or causal arrows in Fig-
ure 6. Bargaining models, which explain the first relation, show that
plea bargains are a function of litigation costs and probability of con-
viction and sentence as perceived by both the defendant and the prose-
cutor. One of the defendant's most important litigation costs is time
spent in jail awaiting trial." Increasing the pretrial release rate lowers
that litigation cost. This likely lowers the defendant's upper limit of
amenability to plea bargains, making it less likely that his upper limit
will be above the prosecutor's lower limit and thereby reducing the
probability of a settlement. The queueing models for determining

43. See Lenihan, Telephones and Raising Bail" Some Lessons in Evaluation Research, I EvAL-
UATION Q. 569, 579 (1977); Wald, Pretrial Detention and Ultimate Freedom: A Statistical Study, 39
N.Y.U.L. REv. 631, 633 (1964).

44. See C. FOOTE, STUDIES ON BAIL 722-30 (1966); D. FREED & P. WALD, BAIL IN THE

UNITED STATES 39-48 (1964); W. THOMAS, BAIL REFORM IN AMERICA 110-18 (1976).
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backlog sizes and the amount of delay or time consumption per case
respectively explain the second and third relations. The fourth relation
is a population model using as its inputs the lower rate of entry and the
higher average length of time a detained defendant remains in jail.

In addition to predicting and explaining the chain of relations from
pretrial release to the size of the jail population, each model suggests
meaningful ways of reducing or stabilizing the occurrence of undesired
relations. For example, the bargaining model suggests that the prose-
cutor could stabilize the rate of guilty pleas in the face of an increased
pretrial release rate by making more attractive offers to released de-
fendants. Even if the rate of guilty pleas declines, the prosecutor can
still stabilize the volume of trials by increasing the dismissal rate; he is
not obligated to prosecute merely because the defendant pleads not
guilty. If the volume of cases increases, the amount of delay can be
stabilized by providing more judges and other court personnel. If delay
increases, there does not have to be a corresponding increase in the
average pretrial detention time provided the prosecutor gives priority
to the trials of incarcerated defendants. If data similar to the data in
Figure 5 were inserted in Figure 6, we could be more precise in deter-
mining the effects of prior events on subsequent events and could sug-
gest effective changes in the system. Even without such data, however,
the chain analysis reasoning process can produce useful descriptive and
prescriptive insights.4"

B. Time Series Analysis

A common social science method of predicting the future from the
past is time series analysis.46 This analysis-also called longitudinal or

45. In the legal process literature there have now appeared a number of examples of Markov
chain reasoning applied to predicting the probability that a given convicted defendant will re-
engage in criminal behavior within a certain number of time periods after being released from
prison. See, e.g., Belkin, Blumstein, & Glass, Recidivism as Feedback Process: An Analytical Model
and Empirical Validation, 1 J. CRIm. JUsT. 7 (1973); Rardin & Gray, Analysis of Crime Control
Strategies, 1 J. CRIm. JUST. 339 (1973); Slivka & Cannavale, An Analytical Model of the Passage of
Defendants Through a Court System, J. RESEARCH IN CRIME & DELINQUENCY 132 (1973); S.
Deutsch, J. Jarvis, & R. Parker, A Network Flow Model for Predicting Criminal Displacement
and Deterrence (1977) (unpublished paper); D. Greenberg, Recidivism as Radioactive Decay
(1975) (unpublished paper); T. Schelling & R. Zeckhauser, Law and Public Policy: Policy Analysis
(1975) (unpublished course materials); D. White & S. Hung Uh, Juvenile Court Records and
Markov Chains (1976) (unpublished paper).

46. See S. KIRKPATRICK, QUANTITATIVE ANALYSIS OF POLITICAL DATA 385-509 (1974); D.
LEEGE & W. FRANCIS, POLITICAL RESEARCH: DESIGN, MEASUREMENT, AND ANALYSIS 383-96

(1974); R. PINDYCK & D. RUBINFELD, ECONOMETRIC MODELS AND ECONOMIC FORECASTING
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over-time analysis-involves obtaining and processing data on one or
more variables for many points in time. It is generally contrasted with
cross-sectional or over-space analysis where data is obtained and
processed over one or more variables for many places at a single point
in time. The processing of the data in either of the analyses tends to
emphasize the development of linear regression equations of the form,
Y = a + BX, or nonlinear regression equations of the form, Y = a" ,

where Y is the variable being predicted to, and X is the variable being
predicted from. The a and b coefficients are determined by computing
the 7 and X scores or their logarithms for each time point or for each
place point along with a regression analysis program.47

There are many ways to classify time series analyses. One useful
method is to categorize the analysis as univariate, bivariate, or mul-
tivariate. Univariate analysis uses information only on the 7 variable;
the X variable simply consists of consecutive numbers corresponding to
the time periods. For example, if we program nationwide crime scores
for the preceding ten years as variable , the numbers one through ten
as variable T, and a regression analysis program, the computer will
provide numerical values for the a and b parameters of the equation:
Crime = a + b (time period). We can use this equation to predict the
amount of crime in the eleventh or twentieth time period by simply
inserting these figures into the parentheses, multiplying by the value of
b, and adding the value of a. This, in effect, extends a trend line to the
ten time data points. If we suspect that crime is not increasing at a
constant rate, but rather at an increasing or decreasing rate, we can
program the logarithms of crime scores for the preceding ten years, the
logarithms of the numbers one through ten, and the same regression
analysis program. The computer will then provide numerical values
for the a and b parameters of the equation: Crime = a (time period)6 .
A numerical value of b greater than 0 but less than 1 indicates crime is

(1976); S. WHEELWRIGHT & S. MAKRiDAKIS, FORECASTING METHODS FOR MANAGEMENT (2d ed.
1977); Russett, Some Decisions in the Regression Analsis of Timae-Series Data, in MATHEMATICAL

APPLICATIONS IN POLITICAL SCIENCE (J. Herndon & J. Bemd eds. 1971).
47. In cross-sectional analysis, the units analyzed are places that have a variety of charac-

teristics or variables. In time series analysis, the units analyzed are time points that have a
variety of characteristics or variables. One kind of cross-sectional analysis has a time element and
uses places as the units of analysis. Some variables, however, are expressed in terms of change
over time. For example, the places might be cities that have NAACP chapters and the variables
might be changes in housing discrimination. See S. NAGEL & M. NEEF, THE APPLICATION OF
MIXED STRATEoms: CrViL RIGHTS AND OTHER MULTI-POLICY ACTIVITIES (1976); Bohrnstedt,
Observations on the Measurement of Change, in SOCIOLOGICAL METHODOLOGY 113-33 (E. Bor-
gatta ed. 1970).
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increasing at a diminishing rate; a numerical value of b greater than 1
indicates crime is increasing at an increasing rate. The computer, using
both the linear and nonlinear approach, wil also yield the percentage
of the Y variation that is explained by the T variation, indicating
which approach has the greater explanatory power.

Bivariate analysis uses information on the Y variable and an X vari-
able that is not a time period counter. For example, the Y variable
might be murders for each year since 1900, and the Xvariable might be
executions for each of the same years. The computer analysis would
then yield equations of the form: murders = aI + b1 (executions), if we
are predicting murders from executions; or executions = a2 + b2
(murders), if we are predicting the converse. We might achieve a more
precise result (le., account for more of the variance on the dependent
variable) by using a lagged independent variable. To predict murders
from executions using this kind of variable might mean that for each
data pair the Y score is at t and the X score is at t-1. This would yield
numerical values for the parameters of the equation, murders, = a + b
(executions,-l), on the assumption that it takes about one year for ex-
ecutions to influence the subsequent murder rate. One can experiment
with a two-year or longer lag to determine which lag accounts for the
greatest change on the murder variable.
If, for example, we suspect that the unemployment rate might influ-

ence the relation between executions and murders, then we can split the
seventy-seven data pairs into two subsets. The subsets consist of mur-
der-years in which unemployment was relatively low and in which un-
employment was relatively high. We should then obtain two separate
regression equations of the form murders = a + b (executions) for each
subset of data. The multivariate alternative approach enters scores for
each year on murder, execution, and unemployment. The computer
then gives numerical values to the parameters in an equation of the
form: murders = a + b , (executions) + b2 (unemployment rate). A
future value for executions (based on zero if executions are abolished)
and a future unemployment rate can then be inserted. Solution of the
formula yields a prediction of the future quantity of murders. Mul-
tivariate analysis can also process similar additional variables and
those that are lagged to show delayed relations or logged to show non-
linear relations.

Another classification of time series analyses relevant to legal process
research is based on whether the independent variable--often a policy
variable-undergoes continuous change or a single interruption. An
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example of a policy variable undergoing continuous change is the
number of executions over the last seventy-seven years. The Connecti-
cut speed crackdown of the 1960's and the British adoption of compul-
sory breathalyzer testing, both of which used highway accidents as the
dependent variable in the time series analysis, are examples of policy
variables undergoing single interruptions.48 Interrupted time series
may show a strong noncausal relation between the X policy and the Y
suspected effect. The noncausal relation may exist because: (1) Y
changed due to a third variable; (2) Y recently increased or decreased
before the policy change and was merely regressing to its average posi-
tion; (3) Y was already moving upward or downward and did not
change its rate or direction when X changed; and (4) Y fluctuates over
time and its fluctuation when X changed was part of its normal pattern.
These alternative explanations must be eliminated before one can con-
clude that the change in X caused the change in y.49

Time series analysis is also classified according to whether its pur-
pose is: (1) to describe graphically how a variable changes over time;
(2) to predict future scores on a variable from knowledge of the time
period (Y), its prior Y score, or a score on another X variable; or (3) to
determine the causes of change over time on the Y variable. The
causal analysis may use a variety of methods and alternative explana-
tions. For example, one might try to determine which of two relations
is valid or stronger: the extent that easing divorce laws causes increases
in divorce rates, or the extent that increases in divorce rates cause di-
vorce laws to be eased. This determination may require holding a third
variable (e.g., urbanism) statistically constant in the multivariate rela-
tion and may also require looking for joint causation relations. Special
forms of bivariate regression analysis, multivariate regression analysis

48. See generally Ross, Campbell, & Glass, Determining the Social Effects a/a Legal Refornr
The Bitish "Breathayser" Crackdown of 1967, in LAW AND SOCIAL CHANGE (S. Nagel ed. 1970);
Campbell & Ross, The Connecticut Crackdown on Speeding. Timne-Series Data in Quasi.Experimen-
talAnalysis, 3 LAw & Soc. REv. 33 (1968).

49. These alternative explanations are less likely to be viable if X changes frequently and Y
consistently undergoes a corresponding change. For materials specifically dealing with inter-
rupted time series, see G. GLASS, V. WILLsON, & J. GoTrMAN, DESIGN AND ANALYSIS OF TIME-
SERIEs ExPEsnArNTs (1975); QUAsI-EXPERMENTAL APPROACHES (J. Caporaso & L. Ross eds.
1973); Campbell, Reforms asExpernments, 24 AM. PSYCHOLOGIST 409 (1969). Some legal policies
undergo neither continuous change nor periodic interruptions. Eg., the effect on oil productivity
of changes in the oil depletion allowance. See J. Bond, A Longitudinal Analysis of the Effects of
the Oil Depletion Allowance: Empirical Evidence to Resolve Conflicting Evaluations (unpub-
lished paper presented at the meeting of the Midwest Political Science Association, at Chicago,
Ill, 1976).
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(two-stage least-squares analysis), and interrupted time series may be
used to separate the effects of divorce laws on divorce rates from the
effects of divorce rates on divorce laws."

A computerized time series analysis not only gives a and b coeffi-
dents and percentages of variance accounted for (R2), but also num-
bers that can be compared to probability tables to determine the
probability that a, b, and R2 can be as large as they are, given the
number of time points, when they might actually be zero due to a dis-
torted sample. This kind of testing for statistical significance is virtu-
ally the same in regression analysis over time points or over many
places at one time point. Time series differs, however, because it is
more likely to involve autocorrelation, which can disrupt the
probability calculations. 1 To determine if autocorrelation is present,
each time point must be given a residual score (Y'), which equals its
actual score (Yt) minus its predicted score (Y), and a lagged residual
score (Y;-,) equal to Y,_1 -Y,-. One then inputs these Y, and Y,'- scores
into the computerized regression analysis for each time point to deter-
mine whether a predictive relationship exists. If the residual scores cor-
relate highly, adjustments must be made in the original regression
equation (Y, = a + bX_-) by lagging, logging, using other transforma-
tions, or adding additional variables to reduce the autocorrelation so
that the chance probability calculations will be more meaningful.

Various research examples from the legal process field illustrate how
time series analysis can clarify predictive relations that would be un-
clear under an analysis of many places at one point in time. It would,
for example, be more meaningful to compare judicial behavior in Mis-
souri before and after the 1940 transition from an elected to an ap-

50. On causal analysis with time series or cross-sectional data, see D. HEimE, CAUSAL ANALY-
sis (1975); Nagel & Neef, CausalAnalyir and the Legal Process, in RESEARCH IN LAW AND SocI-
OLOoY (R. Simon ed. 1977); note 45 .upra.

51. Autocorrelation refers to the extent that the lagged residual scores of the persons, places,
or other units of analysis correlate with each other. A residual score is the difference between
one's actual score and one's predicted score. For example, the actual crime score for a given city
in 1970 might be 60 on a scale from 0 to 100. The predicted crime score based on city size might
be 80. Thus the city has a residual score of -20, meaning the actual score is 20 below the predicted
score. A lagged residual score is a residual score for the city at an earlier point in time. For
example, using a two-year lag, the lagged residual score for 1970 would be the residual score for
1%8, which might be -15. If each residual score for the city and its two-year lagged residual score
differs by 5, perfect autocorrelation is present If, however, those relations are highly random, no
autocorrelation is present. The presence of autocorrelation reduces the certainty that the slope of
the relation between crime and city size (or other relations) is not due to chance sampling
probability. On autocorrelation and other aspects of time series analysis, see M. BRENNAN, supra
note 3.
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pointed judiciary than it would be to compare the appointed judiciary
of Missouri with the elected judiciary of Illinois at the same time point.
The former is more meaningful because other variables that might af-
fect judicial behavior remained constant, whereas the effects of these
variables across state lines were unrelated.52 Similarly, while it is prob-
ably not meaningful to compare the murder rates of Michigan, which
has abolished capital punishment, with Mississippi, which has not, it
might be meaningful to compare Michigan's murder rates before and
after it abolished capital punishment. Instead of an interrupted time
series, one could undertake a continuous time series relating homicides
to executions for many or all states.53

The relation between anticrime expenditures and crime occurrence
provides an excellent illustration of the value of time series in clarifying
legal process relations. If crime and expenditure figures for many cities
at one point in time are entered into a regression analysis, the resulting
regression equation: crime = a + b (expenditures) will have a positive
b coefficient. This implies, contrary to common sense notions, that as
we increase anticrime expenditures the crime rate increases. This
spurious positive relation tends to remain despite attempts to lag or log
the expenditure variable or to hold other variables constant. If, how-
ever, the crime and expenditure scores for many points in time for each
city are entered into a computer, a negative b coeffficient is somewhat
more likely to occur. This result implies that as we increase anticrime
expenditures the crime rate decreases.

The corresponding coefficient or slope is also more likely to be nega-
tive if those variables that may simultaneously influence crime and ex-
penditures are held constant over time. One meaningful way to do this

52. See S. NAGEL, COMPARING ELECTED AND APPOINTED JUDICIAL SYSTEMS (1973); R.
WATSON & R. DOWNING, THE POLITICS OF THE BENCH AND BAR: JUDICIAL SELECTION UNDER
THE MISSOURI NoN-PARTISAN COURT PLAN (1969).

53. See generally H. MArIcK, THE UNEXAMINED DEATH: AN ANALYSIS OF CAPITAL PUN-
ISHMENT (1965); THE DEATH PENALTY IN AMERICA (A. Bedau ed. 1967); Ehrlich, The Deterrent
Effect of Capital Punishment.A Question ofLife and Death, 65 AM. ECON. REv. 314 (1975).

In determining the effects of reapportionment, a before and after analysis is more meaningful
than an analysis between states that are malapportioned and those that are properly apportioned.
The across-states or cross-sectional approach finds that apportionment has no effect on the legisla-
tive output, probably because many other causal variables cannot be meaningfully held constant
when comparing two sets of states at the same point in time. The over-time approach, however,
reveals changes in legislative output before and after reapportionment when reapportioned states
are compared with other states over the same time period. See Bicker, The Effects of Malafppor.
tionment in the States: A Mistrial, in REAPPORTIONMENT IN THE 1970's (N. Polsby ed. 1971);
Cantrall & Nagel, The Effects ofAeapporionment on the Passage of Nonexpenditure Legislation, in
DEMOCRATIC REPRESENTATION AND APPORTIONMENT (L. Papayanopoulos ed. 1973).
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is through cross-lagged panel analysis. By entering into a computer for
each city studied a crime score for each year (Y,), an expenditure score
for each prior year (X.t), and a crime score for each prior year (Y- 1),
we can obtain numerical values for the coefficients in the equation: Y,
= a + b(X.) + b 2(Yt.). Crime at time t is related to expenditures at
time -1 because crime rates tend to reflect anticrime expenditures in
the previous year rather than the present year. Crime for the previous
year is, in effect, held constant in this equation because it tends indi-
rectly to hold constant the variables, other than anticrime expenditures,
that influence previous crime and thus probably influence present
crime. 4 Logarithms of these three variables in the regression analysis
can also be used to consider whether anticrime expenditures and the
other variables have a diminishing returns relation with crime rates.
This technique produces the numerical values for the coefficients or
parameters in the equation Y, = a(Xt-l)bl (yt-)b2.55 In this non-

54. For a discussion of the relative predictive power of equations of the form, Y =f(Y), as
compared to Y = f(X. X?, X), see Goldman, Hooper, & Mahaffey, Caseload Forecasting
Modelsfor Federal District Courts, 5 J. LEGAL STUD. 201 (1976). One usually can predict a
variable more accurately from the same variable at a prior point in time than from other
variables. Predicting from other variables, however, may provide a better understanding of
the cause of fluctuations in the variable and an understanding of the methods that will
favorably influence those fluctuations. By developing a regression equation to predict Y,
from Y,., Y.2, and so on down to Yi (or from X,.1 down to X1), one performs a kind of
prediction similar to Markov chain analysis, especially if the Y variable that one seeks to
predict is scored zero or one for absent or present and can be treated like a probability. A
form of regression analysis called probit analysis explicitly works with Y variables that are
probabilities. This procedure is called cross-lagged panel analysis because it examines the
relationship between crime and expenditures now and at an earlier point in time (lagged
analysis), with over-time data (panel analysis), and across two variables. If one compares:
(1) the relationship between crime and both prior expenditures and prior crime with (2) the
relationship between expenditures and both prior crime and prior expenditures, one can find
the degree of reciprocal causation between crime and anticrime expenditures. The first
relationship indicates the extent to which crime is influenced by anticrime expenditures,
holding prior crime constant; the second relationship indicates the extent to which anti-
crime expenditures are influenced by crime, holding prior expenditures constant. On the use
of time series to analyze reciprocal causation, see Heise, Causal Inferencefrom Panel Data,
in SOCIOLOGICAL METHODOLOGY (G. Bornstedt ed. 1970); Nagel & Neef, Causal Analsis
and the Legal Process, in RESEARCH IN LAW AND SOCIOLOGY (R. Simon ed. 1978).

55. Deserialization is an alternative method of obtaining numerical values for the coefficients
in the equation: Crime i= a + b (Crime ,-,). This equation yields a predicted crime score (f) for
each time point and then a residual or difference score (y), where Y= Y-P. This score repre-
sents the amount of crime that occurred in the city in a given year that could not be explained
or predicted from the previous year's crime or the social variables determining the previous year's
crime. A Y score and an expenditure score (X for each year can be entered into a computer to
obtain the numerical values for the equation: Y = a + bX. For this equation, the value of b is
the slope or marginal rate of return of an extra dollar spent on reducing the unexplained crime
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linear multivariate time series equation, the marginal rate of return in
crime reduction per additional monetary unit spent is b, A(X)bl-,
where A is the product of (Y,.1) b2, Yt-. is the prior year's crime score,
and the coefficients are provided by the computerized regression analy-
sis. This marginal rate of return follows from the optimum level and
optimum mix analysis rule that if Y = aXb, the slope of Y to X is
baXb-.5 6 With this information, we can allocate funds in at least three
ways: (1) in proportion to the multipliers and the exponents in each
city's marginal rate of return; (2) by simultaneously solving a series of
equations where the marginal rates of return are set equal to each
other, as in optimum mix analysis; or (3) by working with one of the
newly developed nonlinear programming routines available at many
computer centers. This time series analysis is thus capable of both
describing the relation between crime occurrence and anticrime ex-
penditures within each city and of being used prescriptively for more
efficient allocation of scarce resources in the legal system.57

C. Difference and Differential Equations

A difference equation uses a dependent variable or variable to be
predicted as of a given point in time (Y) expressed as a function of
itself at an earlier point in time (Y,_,). Each point in time is an integer,
and at each time point the value of Y moves upward or downward. It
can be contrasted with a differential equation in which changes in Y

occurrence. The deserializing approach may in some ways sound simpler than the cross-lagged
panel analysis. It, however, has a defect: prior crime ( Y,.) explains much of the variance in crime
(Y',) and thus virtually nothing is explained by anticrime expenditures (X). This result does not
mean expenditures have no influence, but simply that the relation of crime to prior crime covers
the influence of expenditures because prior crime includes the influence of prior expenditures as
well as demographic and other variables.

56. See text accompanying note 34 suara.
57. Nagel & Neef, Allocating Resources Geographicallyfor Optimum Results, 3 POLITICAL

MEHODOLOGY 383 (1976); Nagel & Neef, Optimally Allocating Anti-Crime Dollars Across U.S.
Cities and Anti-Crime Activities (paper presented at the annual meeting of the Midwest Political
Science Association, 1978). For additional examples of time series analysis applied to the legal
process, see H. ZEISEL, supra note 1, at 251-62; Grossman & Sarat, Litigation in the Federal Courts:
A Comparative Perpective, 9 LAW & Soc. REV. 321 (1975); Rossell, School Desegregation and
#hite Right, 90 POLITICAL SCL Q. 675 (1975-1976); R. Kagan, The Business of State Supreme
Courts (unpublished paper presented at the annual meeting of the Midwest Political Science Asso-
ciation, 1977). The Rossell article asserts that the white flight phenomenon from central cities to
suburbs has been occurring over time without substantial change as a result of court desegregation
orders. An analysis merely comparing cities ordered to desegregate with cities that have not been
so ordered gives the appearance that white flight is greater in the former cities because of the
desegregation orders.
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are continuous rather than abrupt. Both difference and differential
equations are distinguishable from time series regression equations; the
former are deduced from the subject matter, while the latter are in-
duced by fitting a curve to many time data points. Although they do
not necessarily refer to time, this section focuses only on time-oriented
difference and differential equations.58

An example of difference equations in the legal process is the set of
equations describing the relations in plea bargaining between the first
counter offer and the initial offer, any counter offer and the immedi-
ately prior counter offer, and any counter offer and the initial offer.
From the nature of the subject matter, it seems logical that the first
counter offer for the defendant (DI) will be equal to the defendant's
initial offer (DO) plus an increment. It also seems logical that the incre-
ment would represent a percentage of the distance from the defendant's
upper limit (L) to his initial offer (Le., the distance L-Do). In short, the
relation between the first counter offer and the initial offer of the de-
fendant can be symbolized D, = D o + % (L-Do). Similarly, the first
counter offer for the prosecutor (PI) is equal to the prosecutor's initial
offer (Po) minus a decrement which represents a percentage of the dis-
tance from the prosecutor's lower limit (L) to his initial offer (Le., the
distance Po-L). The relation between the first counter offer and the
initial offer of the prosecutor thus can be symbolized P1 = P 0 - % (Po-
L), where % and L for the prosecutor are unlikely to be the same as %
and L for the defendant.

It follows from the preceding reasoning that the relation between any
counter offer and the immediately prior counter offer for either the de-
fendant or the prosecutor can be symbolized F = F_ 1 + % (L - F-,),
where F represents an offer by either the defendant or the prosecutor to
settle the case by reducing the jail term. The t represents the time pe-
riod or the round in the series of paired offers and counter offers. The
equation is sensible for the defendant because his limit is always higher
than or equal to his previous offer. Thus, % (L-F,.) represents a posi-
tive number of years to be added to his previous offer. The equation
also is sensible for the prosecutor because his limit is always lower than
or equal to his previous offer. Thus, % (L - F 1 ) represents a negative
number of years to be subtracted from his previous offer.

58. On difference and differential equations, see M. BRENmAN, supra note 3, at 226-45; F.
CoRTEs, A. PRzEwoRsIu, & J. SPRAGUE, SYsTEMs ANALYSIS FOR SocIAL ScIENTimTS (1974); C.
DiNWIDDY, jupra note 3, at 116-26, 133-49, 199-216.
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Solving a difference equation generally means expressing Y, in terms
of Yo rather than in terms of Y, 1. If Ycan only be expressed in terms
of Y-,, then to determine the value of Y6 would entail first determining
the values of Y'o through Y5. In the plea bargaining example, expres-
sing F, in terms of Fo requires experimenting with the preceding equa-
tions by expressing F, in terms of F, expressing F2 in terms of F1,
which is then expressed in terms of F, and so on until one observes a
relation between F, and F0 . This relation, F, = L + [(I -%)' (F -
L)], can be solved by subtracting the decrement, which is in brackets,
from the defendant's upper limit and adding the increment, which is in
brackets, to the prosecutor's lower limit. The bracketed material will
be a decrement for the defendant because his initial offer (Fo) will be
lower than his limit (L) and an increment for the prosecutor because
his initial offer (Fo) will be higher than his limit (L). The (1- 9)' indi-
cates that a smaller portion of that Fo-L distance is added to or sub-
tracted from L at each successive t stage. For example, (1- %)3 is a
smaller portion than (1-%)2, assuming the splitting rate (or %) remains
roughly constant from stage to stage.

This kind of analysis can be useful in a variety of ways. It can enable
one to predict whether the prosecutor and defendant are likely to con-
verge or settle. If the defendant's upper L limit is higher than the pros-
ecutor's lower L limit, a settlement is likely. It can also enable one
who knows the respective L, %, and F figures to predict the number of
stages or time periods that are likely to converge. That, in turn, indi-
cates that if we want faster and surer convergence, we should seek to:
(1) increase the defendant's upper L limit and initial F0 offer, (2) de-
crease the prosecutor's lower L limit and initial F offer, and (3) in-
crease the splitting rate for both the defendant and the prosecutor. The
analysis also leads to speculation about how L, %, and F are deter-
mined. These components include the predictability of conviction and
sentence and the litigation costs of the defendant and prosecutor. In
addition, the analysis suggests that by increasing predictability (to
avoid misperceptions) and decreasing litigation costs (to avoid coerced
settlements), plea bargains will more accurately reflect trial sentences
without the time and expense of trials.59

59. This same kind of analysis can also be applied to analyzing and improving civil out-of-
court settlements. The equation Y, - Y, (l+r)', where Y is the future value of an amount of
money, o is the initial value, r is the interest rate per year, and t is the number of years, repre-
sents a good example of a differential equation that can be applied to the legal process. Suppose a
plaintiff in a civil case tells a defendant that he will withdraw his lawsuit if the defendant will pay

[Vol. 1978:467
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III. SUMMARY

This article has presented a series of time-oriented models which we
hope will prove useful in reducing delay or predicting future events in
the legal process. Queueing theory is especially useful for reducing
backlog and delay by deducing the implications of arrival and servicing
rates. It also indicates the importance of decreasing the arrival rate and
the number of stages and increasing the service rate and the number of
processors to reduce delay and backlog. Dynamic and sequential pro-
gramming contributes to the reduction of delay and backlog by deter-
mining the optimum sequence of cases and case stages. Critical path
analysis and flow chart models identify stages in the legal process that
are most in need of delay reduction and indicate the effects of input
and parameter changes on those stages. Optimum level analysis in the
form of a time-oriented model focuses on minimizing the sum of the
delay costs and the speed-up costs. Optimum mix analysis enables al-
location of scarce resources among different programs or groups of per-
sonnel to maximize time reduction for a given budget or to minimize
expenditures under a maximum time constraint. Optimum choice
analysis is helpful in developing incentives for judges, prosecutors, and
defense counsel to act in a manner that promotes delay reduction.

A number of models designed to systematically predict future events

$3,000. The defendant surmises that if the case goes to trial five years hence and he loses (assume
a 2/3 chance of losing), the plaintiff will be awarded $6,000. The defendant thus projects the case
will have an expected value of $4,000. The defendant must decide whether he should pay the
plaintiff $3,000 now or pay the plaintiff $4,000 in five years. Using the preceding differential
equation and the current interest rate (which we assume is .06), the equation thus becomes Y, =
3000(1.06)5, and Y, thus equals $4,015. The defendant should therefore put his $3,000 into a
savings account at 6 percent, pay $4,000 to the plaintiff five years hence, and have $15 left over.
This conclusion, however, is shortsighted. It fails to consider litigation costs as well as the possi-
bility that a single defendant, by not accepting the plaintiffs offer to settle, stands to lose $3,000 if
he loses the case (ie., $6,000 damages minus the $3,000 rejected offer) or to save $3,000 if he wins
the case. Further, the equation does not fully consider the variable of inflation. The $6,000 dam-
age award in five years may implicitly take inflation into account. But with greater inflation than
anticipated, the $6,000 would be less valuable.

This differential equation example differs from the previous example involving the choice of a
federal or state court. See note 25 supra. In the critical path example, the plaintiff needed to
know the present value of a future monetary amount determined by the formula Yo = Y(l+r)t .
In contrast, in the present example, the defendant needs to know the future value of a present
monetary amount. Both examples, however, used differential equations because: (1) they express
Y at one point in time in terms of Y at another point in time; (2) they are deductively determined

from the subject matter rather than inductively determined from time data points; and (3) t can be
any decimal part of a year, unlike a difference equation which involves integer jumps. On differ-
ence equations applied to plea bargaining, see Nagel & Neef, Plea Bargaining Decision Theory,
and Equilibrium Models: Part I, 51 IND. L.. 987 (1976); Id. Part 11, 52 IND. L.J. 1 (1976).
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have been explored. Markov chain analysis enables examination of
events that cause a domino-like chain reaction through a series of
branching or successive probabilities and relations. Time series analy-
sis is a valuable tool for: (1) describing graphically how an occurrence
changes over time; (2) predicting future occurrences from trends, cy-
cles, or relations with other occurrences; (3) determining causes of fluc-
tuatigns in occurrences; and (4) providing input into prescriptive or
optimizing models. Difference and differential equations are also use-
ful in prediction, in suggesting variables that are subject to manipula-
tion for reducing delay or producing other desirable results, and in
reaching cost-efficient decisions in civil and criminal settlements.

Unfortunately, the frequency of the application of these models has
not been proportionate to their potentiality and has been limited to
those skilled in the methods of modeling but not necessarily knowl-
edgeable of the legal process. What may be particularly needed is an
awareness of these modeling theories among practicing attorneys,
judges, judicial administrators, legal researchers, and others involved in
the legal process. They need not become professional modelers, but
they should develop a better understanding of the potentialities and
limitations of modeling approaches in order to more constructively ap-
ply them in their work. The authors hope that this article has contrib-
uted to that awareness.6°

60. This awareness is expected to increase as a result of sophisticated delay reduction re-
search projects being conducted by the American Judicature Society, the Federal Judicial Center,
and the National Center for State Courts. An additional stimulus might be the new Court Delay
Reduction Program of the Law Enforcement Assistance Administration which is making generous
grants available for delay reduction research. As this article goes to press, the American BarAsso-
cia/ion Journal reports: "The chairman of one of the country's largest corporations thinks that
business management techniques can be used to solve some of the problems of the courts. Irving
S. Shapiro, chairman of the Du Pont Company, told the Economic Club of Pittsburgh recently
that he's convinced such management techniques would be practical as well as effective."
Lawscofpe, 64 A.B.A.J. 1212 (1978).

The authors of this article and Nancy Munshaw of the Department of Urban and Regional
Planning at the University of Illinois are contemplating the application of most of the models
discussed in this article to data available on the Washington, D.C. court system. More empirical
data has been compiled on that court system than on any other in the United States, but the data
has been used only in flow chart analysis. See DISTRICT OF COLUMBIA COURTS: 1976 ANNUAL
REPORT (1977); PROMIS RESEARCH PROJECT: HIGHLIGHTS OF INTERIM FINDINGS AND IMPLICA-
TIONS (1977); REPORT OF THE PRESIDENT'S COMMISSION ON CRIME IN THE DISTRICT OF COLUM-
BIA (1966).
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APPENDIX

GLOSSARY OF TERMS

Symbol Represents

QUEUEING THEORY

1. Basic Rates

A Arrival rate of cases into the system per
unit of time

S Service rate of cases completed by the sys-
tem per unit of time

A/S Ratio of cases arrived to cases serviced
per unit of time

2. Time Spent

T Total time spent in the system by an aver-
age case

TW  Time spent waiting by an average case
before service begins

Ts  Time spent servicing an average case

3. Number in Backlog

N Total number of cases backed up in the
system

N w  Number of cases in backlog awaiting
servicing

Ns  Number of cases in backlog being ser-
viced

4. Other Symbols

P Probability of a certain amount of time
spent by a case (total, waiting, or being
serviced), or of having a certain number
of cases in the backlog (total, waiting, or
being serviced)

C Number of processing channels
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OPTIMUM SEQUENCING

P 15 P 2  Pleading time for cases 1 and 2

T1, T 2  Trial time for cases I and 2

X A characteristic of a case used to predict
the amount of time cases will consume,
e.g., the plaintiff's or defendant's settle-
ment offer and the kind of personal injury
or crime involved

CRITICAL PATH METHOD

1. Estimated Time for Each Processing Stage

TO  Optimistic time, ie., estimated time if
things go well

TP Pessimistic time, Le., estimated time if
things go poorly

TL Likely time, Le., estimated time in light of
what usually happens

TE  Expected time calculated from To, TP,
and T

2. Present Value of Future Payoff

A given time period or the quantity of
time periods

r The rate of return that can be obtained
by depositing money in a savings account
or other investment for I years

OPTIMUM LEVEL ANALYSIS

1. Relating Time and Judges

T Time in days per average case

J Judges, number of

a Either: (1) time in days consumed by the
average case when there is only one judge
available to process cases, as in T = a/I,
or (2) number of judges needed to reduce
the average time consumed to one day, as
in J= a/T
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2. Costs

Y, Actual or predicted number of dollars
wasted over a given number of days prior
to trial for a case or an average case
(delay costs)

Y12 Actual or predicted number of dollars
expended on judges in order to achieve a
given number of days awaiting trial by an
average case (speed-up costs)

Y Total costs, Le., delay costs plus speed-up
costs for a given number of days

3. The Parameters or Constants for Predicting the Costs from Time
Consumed

A 1  Predicted number of dollars in delay costs
if only one day is consumed, as in Y, =A 1(y) b1

A 2  Predicted number of dollars in speed-up
costs if only one day is consumed, as in
Y2 = -42(y) b

b i  Ratio between a percentage change in
delay costs and a one percent change in
the number of days consumed per aver-
age case

b2  Ratio between a percentage change in
speed-up costs and a one percent change
in the number of days consumed per
average case

OPTIMUM MIX ANALYSIS

P Prosecutors, number of

D Defenders, number of

$J" Judges, expenditures for

$P Prosecution, expenditures for

$D7 Defenders, expenditures for

G Total of dollars available to be allocated
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_M1, M 2  Minimum number of dollars to be allo-
cated to activities I and 2

OPTIMUM CHOICE ANALYSIS

+a Benefits from making time-saving deci-
sions

-b Costs of making time-saving decisions

-c Costs incurred in making time-lengthen-
ing decisions

+d Benefits from making time-lengthening
decisions

TIME SERIES ANALYSIS

Y Actual score at time I

Y,-l Actual score at time t-I or the immediate
prior time point

Y, Predicted score at time I

Residual score at time I or difference
between actual and predicted score

R2  Percentage of variance accounted for

Log Logarithm to the base 10, ie., an expo-
nent (x), such that 10V equals a given
number (N)

DIFFERENCE EQUATIONS

Do, P0  Initial offer of defendant or prosecutor

D1, _)2 Counter offers of defendant at times I
and 2

F11 ,"2 Counter offers of prosecutor at times I
and 2

L Defendant's upper limit or prosecutor's
lower limit

F Offer of either defendant or prosecutor of
the sentence he is willingi to settle for
without a trial
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% Portion or percent of the distance from
the defendant's upper limit down to his
initial offer or from the prosecutor's
lower limit to his initial offer

DIFFERENTIAL EQUATIONS

r The rate of return that can be obtained
by depositing money in a savings account
or other investment for I years

A given time period or the quantity of
time periods

YO The initial or present value of an invest-
ment or a damage award
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BASIC FORMU_4S

Formula Repi

QUEUEING THEORY

1. Time Spent

T = l/(S-A)

TW= T(A/S)

Ts= T- TV

[Vol. 1978:467

*esenfs

Waiting time

Total time

Servicing time

2. Number of Cases in Backlog

N = (A/S)/(J-A/S)

N w = N(A/S)

N = N - NW

OPTIMUM SEQUENCING

Avg. T= (T + ... +
r.)/N, where T = T + T

T= a + bX 1 +... + bX,

T = aX/1• ... X 
n

CRITICAL PATH METHOD

T= (To+ 4T + T ,)/6

P =,Al(l+r),

Total number of cases in backlog

Number in waiting line

Number being serviced

Average time

Prediction of time consumed from case
characteristics assuming linear or con-
stant relations

Prediction of time consumed from case
characteristics assuming nonlinear rela-
tions, diminishing effects, or increasing
effects

Relation between expected, optimistic,
likely, and pessimistic times

Present value of a future amount consid-
ering the interest rate and the number of
time periods
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OPTIMUM LEVEL ANALYSIS

1. Basic Relations

T = a/J Relation between time in days per aver-
age case and number of judges, e.g., T =

1500/J

J = a/T Relation between number of judges and
time in days per average case, e.g., J
1500/T

2. Costs

y= -"4 1()bl Delay costs, e.g., Y1 = $5(7')2

Y2 = A 2(T)b2 Speed-up costs, e.g., Y2 = $165,000(Y)- 1

Y = A 1()bl+ 4 2 (T)b2 Total costs, e.g., $5(7)2 + $165,000(7)- '

A= (Wasted cost per day per jailed defendant) x (Percent of defendants
who are jailed) + (Wasted cost per day per released defendant) X
(Percent of defendants released)
E.g., 4 1= ($7)(.50) + ($3)(.50) = $5

-42 = (a) X (Salary per year)/(Number of days per year)
E.g., _42= (1500)($40,000)/(365) = $165,000

3. Relation Between a Change in Total Costs and a Change in Time per Case
AY/ AT= (b01) (4 1) (7Y)b' + (b2 )(42 )(7)b2 "l

E.g., AY/AT= (2)($5)(7)2-1 + (-I) ($165,000)(T)-l- 1 = 10() -
165,000/(y)2

OPTIMUM MIX ANALYSIS

Numerical values are generally used in the formulae below. They are
based on the hypothetical data from the text, rather than using symbols
for the parameters or constants. The numerical values for prosecutors
and public defenders are calculated analogously to the way they were
above for judges.

1. Relation Between Time and Number of Judges, Prosecutors, and
Defenders

Number 3]

T = 1500/.1 T = 1200/P' T = 100/D
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2. Salary per day (annual salary/365)

$40,000/365 = $110 $30,000/365 = $82 $20,000/365 = $55

3. Relation Between Time and Dollars for Judges, Prosecutors, and
Defenders

T = 165,000/1$J T = 98,400/$P T = 55,000/$D

4. Relation Between a Change in Time and a Change in Dollars for Judges,
Prosecutors, and Defenders

AT/A$J = AT/A$p AT/A$D-

- 165,000($J)-2 -98,400($P)- 2  -55,000($D) -2

5. Equation for Relating T to $J, $, and $D to Consider Overlapping
Effects
T= a($J) b1(sp)b2($D)b3

OPTIMUM CHOICE ANALYSIS

EVs= (+a) + (-b) Expected net value (benefits minus

EVL= (P)(-c) + (1-P)(+d)

TIME SERIES ANALYSIS

1. Univariate and Bivariate Relations

Crime = a+b(Time Period)

costs) from making a time-saving deci-
sion

Expected net value from making a
time-lengthening decision

Predicting crimes for various time
periods

Murders = a1 +b, (Execu-
tions) Predicting murders from executions

Executions = a2+b 2(Murders) Predicting executions from murders

2. Cross-Lagged Panel Analysis to Relate Crime to Expenditures

Y = a+b(X-) + b2(Yl-) Linear relation with b1 as the margi-
nal rate of return
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= a(X,_ _J(I'i)b2 Nonlinear relation with b a(yt_ )b2
(X)b l -1 as the marginal rate of return

3. Deserializing to Relate Crime to Expenditures

Y = a+bY_1

Y= YY,

Ya+bX

DIFFERENCE EQUATIONS

Dl= DO + %(L-Do)

Pj Po- %(Po- L)

= F,-,+ (L-F,-)

, = L+[(I1-)(Fo-L)]

DIFFERENTIAL EQUATIONS

1, = Yo(I+r )

Predicting crime at time t from crime
at time t-1

Defining residual or unexplained crime
as the difference between actual crime
and predicted crime

Predicting residual crime from
anticrime dollars with b as the margi-
nal rate of return

Relation between first counter offer
and initial offer of defendant consider-
ing the defendant's upper limit

Relation between first counter offer
and initial offer of prosecutor consider-
ing the prosecutor's lower limit

Relation between any counter offer at
time t and the immediate prior counter
offer

Relation between any counter offer
and the initial offer considering the
percentage rate at which the defendant
or prosecutor splits the difference
between his last offer and his outer
limit

The future value at time t of an
amount of money offered to settle a
case now, given the interest rate per
time period and the number of time
periods until time t is reached
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