

139

Conceiving Open Systems
†

Christopher M. Kelty

The great thing about standards is that there are so many to

choose from.
1

Openness is an unruly concept. While free tends toward ambiguity

(free as in speech, or free as in beer?), open tends toward obfuscation.

Everyone claims to be open, everyone has something to share,

everyone agrees that being open is the obvious thing to do-after all,

openness is the other half of ―open source‖—but for all its

obviousness, being ―open‖ is perhaps the most complex component

of Free Software. It is never quite clear whether being open is a

means or an end. Worse, the opposite of open in this case

(specifically, ―open systems‖) is not closed, but ―proprietary‖—

signaling the complicated imbrication of the technical, the legal, and

the commercial.

In this Article I tell the story of the contest over the meaning of

―open systems‖ from 1980 to 1993, a contest to create a

simultaneously moral and technical infrastructure within the

computer industry.
2
 The infrastructure in question includes technical

 † This Article was published previously in substantially similar form as Chapter 5 of
CHRISTOPHER M. KELTY, TWO BITS: THE CULTURAL SIGNIFICANCE OF FREE SOFTWARE 14378

(2008), available at http://twobits.net/pub/Kelty-TwoBits.pdf. To aid the legal researcher,

citations have been reformatted in conformance with THE BLUEBOOK: A UNIFORM SYSTEM OF

CITATION (Columbia Law Review Ass‘n et al. eds., 18th ed. 2005).

 Christopher M. Kelty is an associate professor at the University of California, Los

Angeles. He has a joint appointment in the Center for Society and Genetics and in the
department of Information Studies. His research focuses on the cultural significance of

information technology, especially in science and engineering. He is the author most recently of

TWO BITS: THE CULTURAL SIGNIFICANCE OF FREE SOFTWARE, supra note †, as well as
numerous articles on open source and free software, including its impact on education,

nanotechnology, the life sciences, and issues of peer review and research process in the sciences

and in the humanities.

 1. T.A. CRITCHLEY & K.C. BATTY, OPEN SYSTEMS: THE REALITY 17 (1993); DON LIBES

& SANDY RESSLER, LIFE WITH UNIX: A GUIDE FOR EVERYONE 67 (1989).
 2. Moral in this usage signals the ―moral and social order‖ I explored through the

140 Journal of Law & Policy [Vol. 30:139

components—the UNIX operating system and the TCP/IP protocols

of the Internet as open systems—but it also includes ―moral‖

components, including the demand for structures of fair and open

competition, antimonopoly and open markets, and open-standards

processes for high-tech networked computers and software in the

1980s.
3
 By moral, I mean imaginations of the proper order of

collective political and commercial action; referring to much more

than simply how individuals should act, moral signifies a vision of

how economy and society should be ordered collectively.

The open-systems story is also a story of the blind spot of open

systems—in that blind spot is intellectual property. The story reveals

a tension between incompatible moral-technical orders: on the one

hand, the promise of multiple manufacturers and corporations

creating interoperable components and selling them in an open,

heterogeneous market; on the other, an intellectual-property system

that encouraged jealous guarding and secrecy, and granted monopoly

status to source code, designs, and ideas in order to differentiate

products and promote competition. The tension proved irresolvable:

without shared source code, for instance, interoperable operating

systems are impossible. Without interoperable operating systems,

internetworking and portable applications are impossible. Without

portable applications that can run on any system, open markets are

impossible. Without open markets, monopoly power reigns.

Standardization was at the heart of the contest, but by whom and

by what means was never resolved. The dream of open systems,

pursued in an entirely unregulated industry, resulted in a complicated

experiment in novel forms of standardization and cooperation. The

concept of social imaginaries in Chapter 1 of KELTY, supra note †, at 27–63. Or, in the Scottish
Enlightenment sense of Adam Smith, it points to the right organization and relations of

exchange among humans. See generally ADAM SMITH, THE THEORY OF MORAL SENTIMENTS

(2d ed. 1761).
 3. There is, of course, a relatively robust discourse of open systems in biology,

sociology, systems theory, and cybernetics; however, that meaning of open systems is more or

less completely distinct from what openness and open systems came to mean in the computer
industry in the period book-ended by the arrivals of the personal computer and the explosion of

the Internet (ca. 1980–93). One relevant overlap between these two meanings can be found in

the work of Carl Hewitt at the MIT Media Lab and in the interest in ―agorics‖ taken by K. Eric
Drexler, Bernardo Huberman, and Mark S. Miller. See BERNARDO A. HUBERMAN, THE

ECOLOGY OF COMPUTATION (B. A. Huberman ed., 1988).

2009] Conceiving Open Systems 141

creation of a ―standard‖ operating system based on UNIX is the story

of a failure, a kind of ―figuring out‖ gone haywire, which resulted in

huge consortia of computer manufacturers attempting to work

together and compete with each other at the same time. Meanwhile,

the successful creation of a ―standard‖ networking protocol—known

as the Open Systems Interconnection Reference Model (―OSI‖)—is a

story of failure that hides a larger success; OSI was eclipsed in the

same period by the rapid and ad hoc adoption of the Transmission

Control Protocol/Internet Protocol (―TCP/IP‖), which used a radically

different standardization process and which succeeded for a number

of surprising reasons, allowing the Internet to take the form it did in

the 1990s and ultimately exemplifying the moral-technical

imagination of a recursive public—and one at the heart of the

practices of Free Software.

The conception of openness, which is the central plot of these two

stories, has become an essential component of the contemporary

practice and power of Free Software. These early battles created a

kind of widespread readiness for Free Software in the 1990s, a

recognition of Free Software as a removal of open systems‘ blind

spot, as much as an exploitation of its power. The geek ideal of

openness and a moral-technical order (the one that made Napster so

significant an event) was forged in the era of open systems; without

this concrete historical conception of how to maintain openness in

technical and moral terms, the recursive public of geeks would be just

another hierarchical closed organization—a corporation manqué—

and not an independent public serving as a check on the kinds of

destructive power that dominated the open-systems contest.

I. HOPELESSLY PLURAL

Big iron, silos, legacy systems, turnkey systems, dinosaurs,

mainframes: with the benefit of hindsight, the computer industry of

the 1960s to the 1980s appears to be backward and closed, to have

literally painted itself into a corner, as an early Intel advertisement

suggests.
4
 Contemporary observers who show disgust and impatience

 4. Intel, Advertisement, The Difference Between an Open System and Everything Else,

WALL ST. J., May 30, 1984, at 15, reprinted in KELTY, supra note †, at 146.

142 Journal of Law & Policy [Vol. 30:139

with the form that computers took in this era are without fail

supporters of open systems and opponents of proprietary systems that

―lock in‖ customers to specific vendors and create artificial demands

for support, integration, and management of resources. Open systems

(if allowed to flourish) would solve all these problems.

Given the promise of a ―general-purpose computer,‖ it should

seem ironic at best that open systems needed to be created. But the

general-purpose computer never came into being. We do not live in

the world of ―The Computer,‖ but in a world of computers: myriad,

incompatible, specific machines. The design of specialized machines

(or ―architectures‖) was, and still is, key to a competitive industry in

computers. It required CPUs and components and associated software

that could be clearly qualified and marketed as distinct products: the

DEC PDP-11 or the IBM 360 or the CDC 6600. On the Fordist model

of automobile production, the computer industry‘s mission was to

render desired functions (scientific calculation, bookkeeping,

reservations management) in a large box with a button on it (or a very

large number of buttons on increasingly smaller boxes). Despite the

theoretical possibility, such computers were not designed to do

anything, but, rather, to do specific kinds of calculations exceedingly

well. They were objects customized to particular markets.

The marketing strategy was therefore extremely stable from about

1955 to about 1980: identify customers with computing needs, build

a computer to serve them, provide them with all of the equipment,

software, support, or peripherals they need to do the job—and charge

a large amount. Organizationally speaking, it was an industry

dominated by ―IBM and the seven dwarfs‖: Hewlett-Packard,

Honeywell, Control Data, General Electric, NCR, RCA, Univac, and

Burroughs, with a few upstarts like DEC in the wings.

By the 1980s, however, a certain inversion had happened.

Computers had become smaller and faster; there were more and more

of them, and it was becoming increasingly clear to the ―big iron‖

manufacturers that what was most valuable to users was the

information they generated, not the machines that did the generating.

Such a realization, so the story goes, leads to a demand for

interchangeability, interoperability, information sharing, and

networking. It also presents the nightmarish problems of conversion

between a bewildering, heterogeneous, and rapidly growing array of

2009] Conceiving Open Systems 143

hardware, software, protocols, and systems. As one conference paper

on the subject of evaluating open systems put it, ―At some point a

large enterprise will look around and see a huge amount of equipment

and software that will not work together. Most importantly, the

information stored on these diverse platforms is not being shared,

leading to unnecessary duplication and lost profit.‖
5

Open systems emerged in the 1980s as the name of the solution to

this problem: an approach to the design of systems that, if all

participants were to adopt it, would lead to widely interoperable,

integrated machines that could send, store, process, and receive the

user‘s information. In marketing and public-relations terms, it would

provide ―seamless integration.‖

In theory, open systems was simply a question of standards

adoption. For instance, if all the manufacturers of UNIX systems

could be convinced to adopt the same basic standard for the operating

system, then seamless integration would naturally follow as all the

various applications could be written once to run on any variant

UNIX system, regardless of which company made it. In reality, such

a standard was far from obvious, difficult to create, and even more

difficult to enforce. As such, the meaning of open systems was

―hopelessly plural,‖ and the term came to mean an incredibly diverse

array of things.

―Openness‖ is precisely the kind of concept that wavers between

end and means. Is openness good in itself, or is openness a means to

achieve something else—and if so what? Who wants to achieve

openness, and for what purpose? Is openness a goal? Or is it a means

by which a different goal—say, ―interoperability‖ or ―integration‖—

is achieved? Whose goals are these, and who sets them? Are the

goals of corporations different from or at odds with the goals of

university researchers or government officials? Are there large

central visions to which the activities of all are ultimately

subordinate?

Between 1980 and 1993, no person or company or computer

industry consortium explicitly set openness as the goal at which

 5. Brian William Keves, Open Systems Formal Evaluation Process (Nov. 4, 1993), in

USENIX SEVENTH SYSTEM ADMINISTRATION CONFERENCE (LISA ‘93) 87 (1993), available at

http://www.usenix.org/publications/library/proceedings/lisa93/full_papers/keves.pdf.

144 Journal of Law & Policy [Vol. 30:139

organizations, corporations, or programmers should aim, but, by the

same token, hardly anyone dissented from the demand for openness.

As such, it appears clearly as a kind of cultural imperative, reflecting

a longstanding social imagination with roots in liberal democratic

notions, versions of a free market and ideals of the free exchange of

knowledge, but confronting changed technical conditions that bring

the moral ideas of order into relief, and into question.

In the 1980s everyone seemed to want some kind of openness,

whether among manufacturers or customers, from General Motors to

the armed forces.
6
 The debates, both rhetorical and technical, about

the meaning of open systems have produced a slough of writings,

largely directed at corporate IT managers and CIOs. For instance,

Terry A. Critchley and K. C. Batty, the authors of Open Systems: The

Reality,
7
 claim to have collected over a hundred definitions of open

systems. The definitions stress different aspects—from

interoperability of heterogeneous machines, to compatibility of

different applications, to portability of operating systems, to

legitimate standards with open-interface definitions—including those

that privilege ideologies of a free market, as does Bill Gates‘s

definition: ―There‘s nothing more open than the PC market. . . .

[U]sers can choose the latest and greatest software.‖
8
 The range of

meanings was huge and oriented along multiple axes: what, to whom,

how, and so on. Open systems could mean that source code was open

to view or that only the specifications or interfaces were; it could

mean ―available to certain third parties‖ or ―available to everyone,

including competitors‖; it could mean self-publishing, well-defined

interfaces and application programming interfaces (APIs), or it could

mean sticking to standards set by governments and professional

societies. To cynics, it simply meant that the marketing department

liked the word open and used it a lot.

 6. General Motors stirred strong interest in open systems by creating, in 1985, its
Manufacturing Automation Protocol (―MAP‖), which was built on Unix. At the time, General

Motors was the second-largest purchaser of computer equipment after the government. The

Department of Defense and the U.S. Air Force also adopted and required POSIX-compliant

Unix systems early on.

 7. CRITCHLEY & BATTY, supra note 1.

 8. Id. at 11.

2009] Conceiving Open Systems 145

One part of the definition, however, was both consistent and

extremely important: the opposite of an ―open system‖ was not a

―closed system‖ but a ―proprietary system.‖ In industries other than

networking and computing the word proprietary will most likely have

a positive valence, as in ―our exclusive proprietary technology.‖ But

in the context of computers and networks such a usage became

anathema in the 1980s and 1990s; what customers reportedly wanted

was a system that worked nicely with other systems, and that system

had to be by definition open since no single company could provide

all of the possible needs of a modern business or government agency.

And even if it could, it shouldn‘t be allowed to. For instance:

In the beginning was the word and the word, was

―proprietary.‖ I.B.M. showed the way, purveying machines

that existed in splendid isolation. They could not be operated

using programs written for any other make of computer; they

could not communicate with the machines of competitors.

 If your company started out buying computers of various

sizes from the International Business Machines Corporation

because it was the biggest and the best, you soon found

yourself locked as securely to Big Blue as any manacled

wretch in a medieval dungeon. When an I.B.M. rival unveiled

a technologically advanced product, you could only sigh; it

might be years before the new technology showed up in the

I.B.M. line.
9

With the exception of IBM (and to some extent its closest

competitors: Hewlett-Packard, Burroughs, and Unisys), computer

corporations in the 1980s sought to distance themselves from such

―medieval‖ proprietary solutions (such talk also echoes that of usable

pasts of the Protestant Reformation often used by geeks). New firms

like Sun and Apollo deliberately berated the IBM model. Bill Joy

reportedly called one of IBM‘s new releases in the 1980s a ―grazing

 9. Cheryll Aimee Barron, The Gospel According to Joy, N.Y. TIMES, Mar. 27, 1988

(Sunday Magazine), at 28.

146 Journal of Law & Policy [Vol. 30:139

dinosaur ‗with a truck outside pumping its bodily fluids through

it.‘‖
10

Open systems was never a simple solution though: all that

complexity in hardware, software, components, and peripherals could

only be solved by pushing hard for standards—even for a single

standard. Or, to put it differently, during the 1980s, everyone agreed

that open systems was a great idea, but no one agreed on which open

systems. As one of the anonymous speakers in Open Systems: The

Reality puts it, ―[i]t took me a long time to understand what (the

industry) meant by open vs. proprietary, but I finally figured it out.

From the perspective of any one supplier, open meant ‗our products.‘

Proprietary meant ‗everyone else‘s products.‘‖
11

For most supporters of open systems, the opposition between open

and proprietary had a certain moral force: it indicated that

corporations providing the latter were dangerously close to being

evil, immoral, perhaps even criminal monopolists. Although there are

no doubt arguments for closed systems—security, privacy,

robustness, control—the demand for interoperability does not mean

that such closure will be sacrificed.
12

 Closure was also a choice. That

is, open systems was an issue of sovereignty, involving the right, in a

moral sense, of a customer to control a technical order hemmed in by

firm standards that allowed customers to combine a number of

different pieces of hardware and software purchased in an open

market and to control the configuration themselves—not enforced

openness, but the right to decide oneself on whether and how to be

open or closed.

The open-systems idea of moral order conflicts, however, with an

idea of moral order represented by intellectual property: the right,

encoded in law, to assert ownership over and control particular bits of

source code, software, and hardware. The call for and the market in

 10. Dinosaur, in THE ON-LINE HACKER JARGON FILE (Eric Raymond ed., version 4.4.7
2003), http://catb.org/jargon/html/D/dinosaur.html.

 11. CRICHTLEY & BATTY, supra note 1, at 10.

 12. An excellent counterpoint here is PAUL N. EDWARDS, THE CLOSED WORLD:

COMPUTERS AND THE POLITICS OF DISCOURSE IN COLD WAR AMERICA (1996). It clearly

demonstrates the appeal of a thoroughly and hierarchically controlled system such as the Semi-

Automated Ground Environment (―SAGE‖) of the Department of Defense against the
emergence of more ―green world‖ models of openness. Id. at 75–111.

http://catb.org/jargon/html/D/dinosaur.html

2009] Conceiving Open Systems 147

open systems were never imagined as being opposed to intellectual

property as such, even if the opposition between open and proprietary

seemed to indicate a kind of subterranean recognition of the role of

intellectual property. The issue was never explicitly broached. Of the

hundred definitions in Open Systems, only one definition comes

close to including legal issues: ―Speaker at Interop ‗90 (paraphrased

and maybe apocryphal): ‗If you ask to gain access to a technology

and the response you get back is a price list, then that technology is

‗open.‘ If what you get back is a letter from a lawyer, then it‘s not

‗open.‘‘‖
13

Openness here is not equated with freedom to copy and modify,

but with the freedom to buy access to any aspect of a system without

signing a contract, a nondisclosure agreement, or any other legal

document besides a check. The ground rules of competition are

unchallenged: the existing system of intellectual property—a system

that was expanded and strengthened in this period—was a sine qua

non of competition.

Openness understood in this manner means an open market in

which it is possible to buy standardized things that are neither

obscure nor secret, but can be examined and judged—a ―commodity‖

market, where products have functions, where quality is comparable

and forms the basis for vigorous competition. What this notion

implies is freedom from monopoly control by corporations over

products, a freedom that is nearly impossible to maintain when the

entire industry is structured around the monopoly control of

intellectual property through trade secret, patent, or copyright. The

blind spot hides the contradiction between an industry imagined on

the model of manufacturing distinct and tangible products, and the

reality of an industry that wavers somewhere between service and

product, dealing in intangible intellectual property whose boundaries

and identity are in fact defined by how they are exchanged,

circulated, and shared, as in the case of the proliferation and

differentiation of the UNIX operating system.

There was no disagreement about the necessity of intellectual

property in the computer industry of the 1980s, and there was no

 13. CRICHTLEY & BATTY, supra note 1, at 13.

148 Journal of Law & Policy [Vol. 30:139

perceived contradiction in the demands for openness. Indeed,

openness could only make sense if it were built on top of a stable

system of intellectual property that allowed competitors to maintain

clear definitions of the boundaries of their products. But the creation

of interoperable components seemed to demand a relaxation of the

secrecy and guardedness necessary to ―protect‖ intellectual property.

Indeed, for some observers, the problem of openness created the

opportunity for the worst kinds of cynical logic, as in this example

from Regis McKenna‘s Who‟s Afraid of Big Blue?

Users want open environments, so the vendors had better

comply. In fact, it is a good idea to support new standards

early. That way, you can help control the development of the

standards. Moreover, you can take credit for driving the

standard. Supporting standards is a way to demonstrate that

you‘re on the side of users.

 On the other hand, companies can not compete on the basis

of standards alone. Companies that live by standards can die

by standards. Other companies, adhering to the same

standards, could win on the basis of superior manufacturing

technology. If companies do nothing but adhere to standards,

then all computers will become commodities, and nobody will

be able to make any money.

 Thus, companies must keep something proprietary,

something to differentiate their products.
14

By such an account, open systems would be tantamount to

economic regression, a state of pure competition on the basis of

manufacturing superiority, and not on the basis of the competitive

advantage granted by the monopoly of intellectual property, the clear

hallmark of a high-tech industry.
15

 It was an irresolvable tension

 14. REGIS MCKENNA, WHO‘S AFRAID OF BIG BLUE? HOW COMPANIES ARE

CHALLENGING IBM—AND WINNING 178 (1989). McKenna goes on to suggest that computer

companies can differentiate themselves by adding services, better interfaces, or higher
reliability—ironically similar to arguments that the Open Source Initiative would make ten

years later. Id.

 15. Richard Stallman, echoing the image of medieval manacled wretches, characterized
the blind spot thus:

2009] Conceiving Open Systems 149

between the desire for a cooperative, market-based infrastructure and

the structure of an intellectual-property system ill-suited to the

technical realities within which companies and customers operated—

a tension revealing the reorientation of knowledge and power with

respect to creation, dissemination, and modification of knowledge.

From the perspective of intellectual property, ideas, designs, and

source code are everything—if a company were to release the source

code, and allow other vendors to build on it, then what exactly would

they be left to sell? Open systems did not mean anything like free,

open source, or public domain computing. But the fact that

competition required some form of collaboration was obvious as

well: standard software and network systems were needed; standard

markets were needed; standard norms of innovation within the

constraints of standards were needed. In short, the challenge was not

just the creation of competitive products but the creation of a

standard infrastructure, dealing with the technical questions of

availability, modifiability, and reusability of components, and the

moral questions of the proper organization of competition and

collaboration across diverse domains: engineers, academics, the

computer industry, and the industries it computerized. What follows

is the story of how UNIX entered the open-systems fray, a story in

which the tension between the conceiving of openness and the

demands of intellectual property is revealed.

II. OPEN SYSTEMS ONE: OPERATING SYSTEMS

In 1980 UNIX was by all accounts the most obvious choice for a

standard operating system for a reason that seemed simple at the

outset: it ran on more than one kind of hardware. It had been installed

Unix does not give the user any more legal freedom than Windows does. What they

mean by ―open systems‖ is that you can mix and match components, so you can decide

to have, say, a Sun chain on your right leg and some other company‘s chain on your
left leg, and maybe some third company‘s chain on your right arm, and this is

supposed to be better than having to choose to have Sun chains on all of your limbs, or

Microsoft chains on all of your limbs. You know, I don‘t care whose chains are on
each limb. What I want is not to be chained by anyone.

Interview by Michael Gross with Richard Stallman, in N.Y., N.Y., and Cambridge, Mass.

(1999), available at http://www.mgross.com/MoreThgsChng/interviews/stallman5.html.

150 Journal of Law & Policy [Vol. 30:139

on DEC machines and IBM machines and Intel processors and

Motorola processors—a fact exciting to many professional

programmers, university computer scientists, and system

administrators, many of whom also considered UNIX to be the best

designed of the available operating systems.

There was a problem, however (there always is): UNIX belonged

to AT&T, and AT&T had licensed it to multiple manufacturers over

the years, in addition to allowing the source code to circulate more or

less with abandon throughout the world and to be ported to a wide

variety of different machine architectures. Such proliferation, albeit

haphazard, was a dream come true: a single, interoperable operating

system running on all kinds of hardware. Unfortunately, proliferation

would also undo that dream, because it meant that as the markets for

workstations and operating systems heated up, the existing versions

of UNIX hardened into distinct and incompatible versions with

different features and interfaces. By the mid 1980s, there were

multiple competing efforts to standardize UNIX, an endeavour that

eventually went haywire, resulting in the so-called UNIX wars, in

which ―gangs‖ of vendors (some on both sides of the battle) teamed

up to promote competing standards. The story of how this happened

is instructive, for it is a story that has been reiterated several times in

the computer industry.
16

As a hybrid commercial-academic system, UNIX never entered

the market as a single thing. It was licensed in various ways to

different people, both academic and commercial, and contained

additions and tools and other features that may or may not have

originated at (or been returned to) Bell Labs. By the early 1980s, the

Berkeley Software Distribution version was in fact competing with

the AT&T version, even though BSD was a sublicensee—and it was

not the only one. By the late 1970s and early 1980s, a number of

corporations had licensed UNIX from AT&T for use on new

machines. Microsoft licensed it (and called it Xenix, rather than

 16. A similar story can be told about the emergence, in the late 1960s and early 1970s, of

manufacturers of ―plug-compatible‖ devices, peripherals that plugged into IBM machines. See

Shigeru Takahashi, The Rise and Fall of the Plug-Compatible Mainframes, IEEE ANNALS

HIST. COMPUTING, Jan.–Mar. 2005, at 4, 4–16. Similarly, in the 1990s the story of browser
compatibility and the World Wide Web Consortium (―W3C‖) standards is another

recapitulation.

2009] Conceiving Open Systems 151

licensing the name UNIX as well) to be installed on Intel-based

machines. IBM, Unisys, Amdahl, Sun, DEC, and Hewlett-Packard all

followed suit and created their own versions and names: HP-UX,

A/UX, AIX, Ultrix, and so on. Given the ground rules of trade

secrecy and intellectual property, each of these licensed versions

needed to be made legally distinct if they were to compete with each

other. Even if UNIX remained conceptually pure in an academic or

pedagogical sense, every manufacturer would nonetheless have to

tweak, to extend, to optimize in order to differentiate. After all, ―[i]f

companies do nothing but adhere to standards, then all computers

will become commodities, and nobody will be able to make any

money.‖
17

It was thus unlikely that any of these corporations would

contribute the changes they made to UNIX back into a common pool,

and certainly not back to AT&T, which subsequent to the 1984

divestiture finally released their own commercial version of UNIX,

called UNIX System V. Very quickly, the promising ―open‖ UNIX of

the 1970s became a slough of alternative operating systems, each

incompatible with the next thanks to the addition of market-

differentiating features and hardware-specific tweaks. According to

Pamela Gray, ―[b]y the mid-1980s, there were more than 100

versions in active use‖ centered around the three market leaders,

AT&T‘s System V, Microsoft/SCO Xenix, and the BSD.
18

 By 1984,

the differences in systems had become significant—as in the case of

the BSD additions of the TCP/IP protocols, the vi editor, and the

Pascal compiler—and created not only differentiation in terms of

quality but also incompatibility at both the software and networking

levels.

Different systems of course had different user communities, based

on who was the customer of whom. Eric Raymond suggests that in

the mid-1980s, independent hackers, programmers, and computer

scientists largely followed the fortunes of BSD:

 17. MCKENNA, supra note 14, at 178.

 18. PAMELA GRAY, OPEN SYSTEMS: A BUSINESS STRATEGY FOR THE 1990S 75, 75

(1991).

152 Journal of Law & Policy [Vol. 30:139

The divide was roughly between longhairs and shorthairs;

programmers and technical people tended to line up with

Berkeley and BSD, more business-oriented types with AT&T

and System V. The longhairs, repeating a theme from Unix‘s

early days ten years before, liked to see themselves as rebels

against a corporate empire; one of the small companies put out

a poster showing an X-wing-like space fighter marked ―BSD‖

speeding away from a huge AT&T ‗death star‘ logo left broken

and in flames.
19

So even though UNIX had become the standard operating system

of choice for time-sharing, multi-user, high-performance computers

by the mid-1980s, there was no such thing as UNIX. Competitors in

the UNIX market could hardly expect the owner of the system,

AT&T, to standardize it and compete with them at the same time, and

the rest of the systems were in some legal sense still derivations from

the original AT&T system. Indeed, in its licensing pamphlets, AT&T

even insisted that UNIX was not a noun, but an adjective, as in ―the

UNIX system.‖
20

The dawning realization that the proliferation of systems was not

only spreading UNIX around the world but also spreading it thin and

breaking it apart led to a series of increasingly startling and high-

profile attempts to ―standardize‖ UNIX. Given that the three major

branches (BSD, which would become the industry darling as Sun‘s

Solaris operating system; Microsoft, and later SCO Xenix; and

AT&T‘s System V) all emerged from the same AT&T and Berkeley

work done largely by Thompson, Ritchie, and Joy, one would think

that standardization would be a snap. It was anything but.

III. FIGURING OUT GOES HAYWIRE

Figuring out the moral and technical order of open systems went

haywire around 1986-88, when there were no fewer than four

 19. ERIC S. RAYMOND, THE ART OF UNIX PROGRAMMING 35–42 (2004), available at

http://www.faqs.org/docs/artu/ch02s01.html#id2880014.
 20. LIBES & RESSLER, supra note 1, at 22; see also Andrew Tanenbaum, The Unix

Marketplace in 1987: Life, the Universe and Everything (June 1987), in PROC. SUMMER 1987

USENIX CONF., June 1987, at 419–24.

http://www.faqs.org/docs/artu/ch02s01.html#id2880014

2009] Conceiving Open Systems 153

competing international standards, represented by huge consortia of

computer manufacturers (many of whom belonged to multiple

consortia): POSIX, the X/Open consortium, the Open Software

Foundation, and UNIX International. The blind spot of open systems

had much to do with this crazy outcome: academics, industry, and

government could not find ways to agree on standardization. One

goal of standardization was to afford customers choice; another was

to allow competition unconstrained by ―artificial‖ means. A standard

body of source code was impossible; a standard ―interface definition‖

was open to too much interpretation; government and academic

standards were too complex and expensive; no particular

corporation‘s standard could be trusted (because they could not be

trusted to reveal it in advance of their own innovations); and worst of

all, customers kept buying, and vendors kept shipping, and the world

was increasingly filled with diversity, not standardization.

UNIX proliferated quickly because of porting, leading to multiple

instances of an operating system with substantially similar source

code shared by academics and licensed by AT&T. But it

differentiated just as quickly because of forking, as particular features

were added to different ports. Some features were reincorporated into

the ―main‖ branch—the one Thompson and Ritchie worked on—but

the bulk of these mutations spread in a haphazard way, shared

through users directly or implemented in newly formed commercial

versions. Some features were just that, features, but others could

extend the system in ways that might make an application possible on

one version, but not on another.

The proliferation and differentiation of UNIX, the operating

system, had peculiar effects on the emerging market for UNIX, the

product: technical issues entailed design and organizational issues.

The original UNIX looked the way it did because of the very peculiar

structure of the organization that created and sustained UNIX: Bell

Labs and the worldwide community of users and developers. The

newly formed competitors, conceiving of UNIX as a product distinct

from the original UNIX, adopted it precisely because of its portability

and because of the promise of open systems as an alternative to ―big

iron‖ mainframes. But as UNIX was funneled into existing

corporations with their own design and organizational structures, it

started to become incompatible with itself, and the desire for

154 Journal of Law & Policy [Vol. 30:139

competition in open systems necessitated efforts at UNIX

standardization.

The first step in the standardization of open systems and UNIX

was the creation of what was called an ―interface definition,‖ a

standard that enumerated the minimum set of functions that any

version of UNIX should support at the interface level, meaning that

any programmer who wrote an application could expect to interact

with any version of UNIX on any machine in the same way and get

the same response from the machine (regardless of the specific

implementation of the operating system or the source code that was

used). Interface definitions, and extensions to them, were ideally to

be published and freely available.

The interface definition was a standard that emphasized

portability, not at the source-code or operating-system level, but at

the application level, allowing applications built on any version of

UNIX to be installed and run on any other. The push for such a

standard came first from a UNIX user group founded in 1980 by Bob

Marsh and called, after the convention of file hierarchies in the UNIX

interface, ―/usr/group‖ (later renamed Uniforum). The 1984

/usr/group standard defined a set of system calls, which, however,

―was immediately ignored and, for all practical purposes, useless.‖
21

It seemed the field was changing too fast and UNIX proliferating and

innovating too widely for such a standard to work.

The /usr/group standard nevertheless provided a starting point for

more traditional standards organizations—the Institute of Electrical

and Electronics Engineers (―IEEE‖) and the American National

Standards Institute (―ANSI‖)—to take on the task. Both institutions

took the /usr/group standard as a basis for what would be called IEEE

P1003 Portable Operating System Interface for Computer

Environments (―POSIX‖). Over the next three years, from 1984 to

1987, POSIX would work diligently at providing a standard interface

definition for UNIX.

Alongside this development, the AT&T version of UNIX became

the basis for a different standard, the System V Interface Definition

(―SVID‖), which attempted to standardize a set of functions similar

 21. LIBES & RESSLER, supra note 1, at 67.

2009] Conceiving Open Systems 155

but not identical to the /usr/group and POSIX standards. Thus

emerged two competing definitions for a standard interface to a

system that was rapidly proliferating into hundreds of tiny operating-

system fiefdoms.
22

 The danger of AT&T setting the standard was not

lost on any of the competing manufacturers. Even if they created a

thoroughly open standard-interface definition, AT&T‘s version of

UNIX would be the first to implement it, and they would continually

have privileged knowledge of any changes: if they sought to change

the implementation, they could change the standard; if they received

demands that the standard be changed, they could change their

implementation before releasing the new standard.

In response to this threat, a third entrant into the standards race

emerged: X/Open, which comprised a variety of European computer

manufacturers (including AT&T!) and sought to develop a standard

that encompassed both SVID and POSIX. The X/Open initiative

grew out of European concern about the dominance of IBM and

originally included Bull, Ericsson, ICL, Nixdorf, Olivetti, Philips,

and Siemens. In keeping with a certain 1980s taste for the integration

of European economic activity vis-à-vis the United States and Japan,

these manufacturers banded together both to distribute a unified

UNIX operating system in Europe (based initially on the BSD and

Sun versions of UNIX) and to attempt to standardize it at the same

time.

X/Open represented a subtle transformation of standardization

efforts and of the organizational definition of open systems. While

the /usr/group standard was developed by individuals who used

UNIX, and the POSIX standard by an acknowledged professional

society (IEEE), the X/Open group was a collective of computer

corporations that had banded together to fund an independent entity

to help further the cause of a standard UNIX. This paradoxical

situation—of a need to share a standard among all the competitors

and the need to keep the details of that standardized product secret to

maintain an advantage—was one that many manufacturers, especially

 22. A case might be made that a third definition, the ANSI standard for the C

programming language, also covered similar ground, which of course it would have had to in
order to allow applications written on one operating system to be compiled and run on another.

See GRAY, supra note 18, at 55–58; LIBES & RESSLER, supra note 1, at 70–75.

156 Journal of Law & Policy [Vol. 30:139

the Europeans with their long experience of IBM‘s monopoly,

understood as mutually destructive. Hence, the solution was to

engage in a kind of organizational innovation, to create a new form of

metacorporate structure that could strategically position itself as at

least temporarily interested in collaboration with other firms, rather

than in competition. Thus did stories and promises of open systems

wend their way from the details of technical design to those of

organizational design to the moral order of competition and

collaboration, power and strategy. ―Standards‖ became products that

corporations sought to ―sell‖ to their own industry through the

intermediary of the consortium.

In 1985 and 1986 the disarrayed state of UNIX was also

frustrating to the major U.S. manufacturers, especially to Sun

Microsystems, which had been founded on the creation of a market

for UNIX-based ―workstations,‖ high-powered networked computers

that could compete with mainframes and personal computers at the

same time. Founded by Bill Joy, Vinod Khosla, and Andreas

Bechtolsheim, Sun had very quickly become an extraordinarily

successful computer company. The business pages and magazines

were keen to understand whether workstations were viable

competitors to PCs, in particular to those of IBM and Microsoft, and

the de facto standard DOS operating system, for which a variety of

extremely successful business-, personal-, and home-computer

applications were written.

Sun seized on the anxiety around open systems, as is evident in

the ad it ran during the summer of 1987.
23

 The ad plays subtly on two

anxieties: the first is directed at the consumer and suggests that only

with Sun can one actually achieve interoperability among all of one

business‘ computers, much less across a network or industry; the

second is more subtle and plays to fears within the computer industry

itself, the anxiety that Sun might merge with one of the big

corporations, AT&T or Unisys, and corner the market in open

systems by producing the de facto standard.
24

 23. Sun Microsystems, Advertisement, Announcing the Biggest Merger in the Computer

Business, WALL ST. J., July 9, 1987, at 11, reprinted in KELTY, supra note †, at 159.
 24. Id., reprinted in KELTY, supra note †, at 159.

2009] Conceiving Open Systems 157

In fact, in October 1987 Sun announced that it had made a deal

with AT&T. AT&T would distribute a workstation based on Sun‘s

SPARC line of workstations and would acquire 20% of Sun.
25

 As

part of this announcement, Sun and AT&T made clear that they

intended to merge two of the dominant versions of UNIX on the

market: AT&T‘s System V and the BSD-derived Solaris. This move

clearly frightened the rest of the manufacturers interested in UNIX

and open systems, as it suggested a kind of super-power alignment

that would restructure (and potentially dominate) the market. A 1988

article in the New York Times quotes an industry analyst who

characterizes the merger as ―a matter of concern at the highest levels

of every major computer company in the United States, and possibly

the world,‖ and it suggests that competing manufacturers ―also fear

that A.T.&T. will gradually make Unix a proprietary product, usable

only on A.T.&T. or Sun machines.‖
26

 The industry anxiety was great

enough that in March Unisys (a computer manufacturer, formerly

Burroughs-Sperry) announced that it would work with AT&T and

Sun to bring UNIX to its mainframes and to make its business

applications run on UNIX. Such a move was tantamount to Unisys

admitting that there would be no future in proprietary high-end

computing—the business on which it had hitherto built its

reputation—unless it could be part of the consortium that could own

the standard.
27

In response to this perceived collusion a group of U.S. and

European companies banded together to form another rival

organization—one that partially overlapped with X/Open but now

included IBM—this one called the Open Software Foundation. A

nonprofit corporation, the foundation included IBM, Digital

Equipment, Hewlett-Packard, Bull, Nixdorf, Siemens, and Apollo

Computer (Sun‘s most direct competitor in the workstation market).

Their goal was explicitly to create a ―competing standard‖ for UNIX

that would be available on the hardware they manufactured (and

 25. A.T.&T. Deal with Sun Seen, N.Y. TIMES, Oct. 19, 1987, at D8.

 26. Thomas C. Hayes, A.T.&T.‟s Unix Is a Hit at Last, and Other Companies Are Wary,

N.Y. TIMES, Feb. 24, 1988, at D8.

 27. Barnaby J. Feder, Unisys Obtains Pacts for Unix Capabilities, N.Y. TIMES, Mar. 10,
1988, at D4.

158 Journal of Law & Policy [Vol. 30:139

based, according to some newspaper reports, on IBM‘s AIX, which

was to be called OSF/1). AT&T appeared at first to support the

foundation, suggesting that if the Open Software Foundation could

come up with a standard, then AT&T would make System V

compatible with it. Thus, 1988 was the summer of open love. Every

major computer manufacturer in the world was now part of some

consortium or another, and some were part of two—each promoting a

separate standard.

Of all the corporations, Sun did the most to brand itself as the

originator of the open-systems concept. They made very broad claims

for the success of open-systems standardization, as for instance in an

ad from August 1988, which stated in part:

But what‘s more, those sales confirm a broad acceptance of the

whole idea behind Sun.

 The Open Systems idea. Systems based on standards so

universally accepted that they allow combinations of hardware

and software from literally thousands of independent

vendors. . . . So for the first time, you‘re no longer locked into

the company who made your computers. Even if it‘s us.
28

The ad goes on to suggest that ―in a free market, the best products

win out,‖ even as Sun played both sides of every standardization

battle, cooperating with both AT&T and with the Open Software

Foundation.
29

 But by October of that year, it was clear to Sun that the

idea hadn‘t really become ―so universal‖ just yet. In that month

AT&T and Sun banded together with seventeen other manufacturers

and formed a rival consortium: Unix International, a coalition of the

willing that would back the AT&T UNIX System V version as the

one true open standard. In a full-page advertisement from Halloween

of 1988, run simultaneously in the New York Times, the Washington

Post, and the Wall Street Journal, the rhetoric of achieved success

remained, but now instead of ―the Open Systems idea,‖ it was ―your

demand for UNIX System V-based solutions that ushered in the era

 28. Sun Microsystems, Advertisement, It Pays to Be Open, WALL ST. J., Aug. 2, 1988, at
D3, reprinted in KELTY, supra note †, at 161.

 29. Id., reprinted in KELTY, supra note †, at 161.

2009] Conceiving Open Systems 159

of open architecture.‖
30

 Instead of a standard for all open systems, it

was a war of all against all, a war to assure customers that they had

made, not the right choice of hardware or software, but the right

choice of standard.

The proliferation of standards and standards consortia is often

referred to as the UNIX wars of the late 1980s, but the creation of

such consortia did not indicate clearly drawn lines. Another metaphor

that seems to have been very popular in the press at the time was that

of ―gang‖ warfare (no doubt helped along by the creation of another

industry consortia informally called the Gang of Nine, which were

involved in a dispute over whether MicroChannel or EISA buses

should be installed in PCs). The idea of a number of companies

forming gangs to fight with each other, Bloods-and-Crips style—or

perhaps more Jets-and-Sharks style, minus the singing—was no

doubt an appealing metaphor at the height of Los Angeles‘s very real

and high-profile gang warfare. But as one article in the New York

Times pointed out, these were strange gangs:

Since ―openness‖ and ―cooperation‖ are the buzzwords behind

these alliances, the gang often asks its enemy to join. Often the

enemy does so, either so that it will not seem to be opposed to

openness or to keep tabs on the group. I.B.M. was invited to

join the corporation for Open Systems, even though the clear if

unstated motive of the group was to dilute I.B.M.‘s influence

in the market. A.T.&T. negotiated to join the Open Software

Foundation, but the talks collapsed recently.

 Some companies find it completely consistent to be

members of rival gangs. . . . About 10 companies are members

of both the Open Software Foundation and its archrival, Unix

International.
31

 30. Unix Int‘l, Advertisement, If You Believe Unix System V Is the Open Standard, You‟re

Not Alone, N.Y. TIMES, Oct. 31, 1988, at D3, reprinted in KELTY, supra note †, at 163.

 31. Andrew Pollack, Computer „Gangs‟ Stake Out Turf, N.Y. TIMES, Dec. 13, 1988, at

D1; see also Evelyn Richards, Computer Industry Slips into Disarray as Squabbling Grows,

WASH. POST, Dec. 11, 1988, at K1; Brit Hume, IBM, Once the Bully on the Block, Faces a

Tough New PC Gang, WASH. POST, Oct. 3, 1988, at E24.

160 Journal of Law & Policy [Vol. 30:139

The proliferation of these consortia can be understood in various

ways. One could argue that they emerged at a time-during the Reagan

administration—when antitrust policing had diminished to the point

where computer corporations did not see such collusion as a risky

activity vis-à-vis antitrust policing. One could also argue that these

consortia represented a recognition that the focus on hardware control

(the meaning of proprietary) had been replaced with a focus on the

control of the ―open standard‖ by one or several manufacturers, that

is, that competition was no longer based on superior products, but on

―owning the standard.‖ It is significant that the industry consortia

quickly overwhelmed national efforts, such as the IEEE POSIX

standard, in the media—an indication that no one was looking to

government or nonprofits, or to university professional societies, to

settle the dispute by declaring a standard, but rather to industry itself

to hammer out a standard, de facto or otherwise. Yet another way to

understand the emergence of these consortia is as a kind of mutual

policing of the market, a kind of paranoid strategy of showing each

other just enough to make sure that no one would leapfrog ahead and

kill the existing, fragile competition.

What this proliferation of UNIX standards and consortia most

clearly represents, however, is the blind spot of open systems: the

difficulty of having collaboration and competition at the same time in

the context of intellectual-property rules that incompletely capture the

specific and unusual characteristics of software. For participants in

this market, the structure of intellectual property was unassailable—

without it, most participants assumed, innovation would cease and

incentives disappear. Despite the fact that secrecy haunted the

industry, its customers sought both openness and compatibility.

These conflicting demands proved irresolvable.

IV. DENOUEMENT

Ironically, the UNIX wars ended not with the emergence of a

winner, but with the reassertion of proprietary computing: Microsoft

Windows and Windows NT. Rather than open systems emerging

victorious, ushering in the era of seamless integration of diverse

components, the reverse occurred: Microsoft managed to grab a huge

share of computer markets, both desktop and high-performance, by

2009] Conceiving Open Systems 161

leveraging its brand, the ubiquity of DOS, and application-software

developers‘ dependence on the ―Wintel‖ monster (Windows plus

Intel chips). Microsoft triumphed, largely for the same reasons the

open-systems dream failed: the legal structure of intellectual property

favored a strong corporate monopoly on a single, branded product

over a weak array of ―open‖ and competing components. There was

no large gain to investors, or to corporations, from an industry of nice

guys sharing the source code and making the components work

together. Microsoft, on the other hand, had decided to do so internal

to itself; it did not necessarily need to form consortia or standardize

its operating systems, if it could leverage its dominance in the market

to spread the operating system far and wide. It was, as standards

observers like to say, the triumph of de facto standardization over de

jure. It was a return to the manacled wretches of IBM‘s monopoly—

but with a new dungeon master.

The denouement of the UNIX standards story was swift: AT&T

sold its UNIX System Labs (including all of the original source and

rights) to Novell in 1993, who sold it in turn to SCO two years later.

Novell sold (or transferred) the trademark name UNIX™ to the

X/Open group, which continued to fight for standardization,

including a single universal UNIX specification. In 1996 X/Open and

the Open Software Foundation merged to form the Open Group.
32

The Open Group eventually joined forces with IEEE to turn POSIX

into a single UNIX specification in 2001. They continue to push the

original vision of open systems, though they carefully avoid using the

name or concept, referring instead to the trademarked mouthful

―Boundaryless Information Flow‖ and employing an updated and

newly inscrutable rhetoric: ―Boundaryless Information Flow, a

shorthand representation of ‗access to integrated information to

support business process improvements‘ represents a desired state of

an enterprise‘s infrastructure and is specific to the business needs of

the organization.‖
33

 32. The Unix System—History and Timeline, http://www.unix.org/what_is_unix/history_

timeline.html (last visited Feb. 27, 2009).

 33. The Open Group Vision and Mission, http://www.opengroup.org/overview/vision-

mission.htm (last visited Feb. 27, 2009).

http://www.unix.org/what_is_unix/history_timeline.html
http://www.unix.org/what_is_unix/history_timeline.html
http://www.opengroup.org/overview/vision-mission.htm
http://www.opengroup.org/overview/vision-mission.htm

162 Journal of Law & Policy [Vol. 30:139

The Open Group, as well as many other participants in the history

of open systems, recognize the emergence of ―open source‖ as a

return to the now one true path of boundaryless information flow.

Eric Raymond, of course, sees continuity and renewal (not least of

which is in his own participation in the Open Source movement) and

in his Art of UNIX Programming says, ―The Open Source movement

is building on this stable foundation and is creating a resurgence of

enthusiasm for the UNIX philosophy. In many ways Open Source

can be seen as the true delivery of Open Systems that will ensure it

continues to go from strength to strength.‖
34

This continuity, of course, deliberately disavows the centrality of

the legal component, just as Raymond and the Open Source Initiative

had in 1998. The distinction between a robust market in UNIX

operating systems and a standard UNIX-based infrastructure on

which other markets and other activities can take place still remains

unclear even to those closest to the money and machines. It does not

yet exist, and may well never come to.

The growth of Free Software in the 1980s and 1990s depended on

openness as a concept and component that was figured out during the

UNIX wars. It was during these wars that the Free Software

Foundation (and other groups, in different ways) began to recognize

the centrality of the issue of intellectual property to the goal of

creating an infrastructure for the successful creation of open

systems.
35

 The GNU (GNU‘s Not Unix) project in particular, but also

the X Windows system at MIT, the Remote Procedure Call and

Network File System (―NFS‖) systems created by Sun, and tools like

sendmail and BIND were each in their own way experiments with

alternative licensing arrangements and were circulating widely on a

variety of the UNIX versions in the late 1980s. Thus, the experience

of open systems, while technically a failure as far as UNIX was

concerned, was nonetheless a profound learning experience for an

entire generation of engineers, hackers, geeks, and entrepreneurs. Just

as the UNIX operating system had a pedagogic life of its own,

 34. The Unix System, supra note 32.

 35. Larry McVoy was an early voice, within Sun, arguing for solving the open-systems
problem by turning to Free Software. Larry McVoy, The Sourceware Operating System

Proposal (Nov. 9, 1993), http://www.bitmover.com/lm/papers/srcos.html.

http://www.bitmover.com/lm/papers/srcos.html

2009] Conceiving Open Systems 163

inculcating itself into the minds of engineers as the paradigm of an

operating system, open systems had much the same effect, realizing

an inchoate philosophy of openness, interconnection, compatibility,

and interoperability—in short, availability and modifiability—that

was in conflict with intellectual-property structures as they existed.

To put it in Freudian terms: the neurosis of open systems was not

cured, but the structure of its impossibility had become much clearer

to everyone. UNIX, the operating system, did not disappear at all—

but UNIX, the market, did.

V. OPEN SYSTEMS TWO: NETWORKS

The struggle to standardize UNIX as a platform for open systems

was not the only open-systems struggle; alongside the UNIX wars,

another ―religious war‖ was raging. The attempt to standardize

networks—in particular, protocols for the inter-networking of

multiple, diverse, and autonomous networks of computers—was also

a key aspect of the open-systems story of the 1980s.
36

 The war

between the TCP/IP and OSI was also a story of failure and

surprising success: the story of a successful standard with

international approval (the OSI protocols) eclipsed by the

experimental, military-funded TCP/IP, which exemplified an

alternative and unusual standards process. The moral-technical orders

expressed by OSI and TCP/IP are, like that of UNIX, on the border

between government, university, and industry; they represent

conflicting social imaginations in which power and legitimacy are

organized differently and, as a result, expressed differently in the

technology.

OSI and TCP/IP started with different goals: OSI was intended to

satisfy everyone, to be the complete and comprehensive model

against which all competing implementations would be validated;

 36. The distinction between a protocol, an implementation and a standard is important:
Protocols are descriptions of the precise terms by which two computers can communicate (i.e.,

a dictionary and a handbook for communicating). An implementation is the creation of software

that uses a protocol (i.e., actually does the communicating); thus two implementations using the
same protocol should be able to share data. A standard defines which protocol should be used

by which computers, and for what purposes. It may or may not define the protocol, but will set

limits on changes to that protocol.

164 Journal of Law & Policy [Vol. 30:139

TCP/IP, by contrast, emphasized the easy and robust interconnection

of diverse networks. TCP/IP is a protocol developed by bootstrapping

between standard and implementation, a mode exemplified by the

Requests for Comments system that developed alongside them as part

of the Arpanet project. OSI was a ―model‖ or reference standard

developed by internationally respected standards organizations.

In the mid-1980s OSI was en route to being adopted

internationally, but by 1993 it had been almost completely eclipsed

by TCP/IP. The success of TCP/IP is significant for three reasons: (1)

availability—TCP/IP was itself available via the network and

development was open to anyone, whereas OSI was a

bureaucratically confined and expensive standard and participation

was confined to state and corporate representatives, organized

through ISO in Geneva; (2) modifiability—TCP/IP could be copied

from an existing implementation (such as the BSD version of UNIX)

and improved, whereas OSI was a complex standard that had few

existing implementations available to copy; and (3) serendipity—new

uses that took advantage of availability and modifiability sprouted,

including the ―killer app‖ that was the World Wide Web, which was

built to function on existing TCP/IP—based networks, convincing

many manufacturers to implement that protocol instead of, or in

addition to, OSI.

The success of TCP/IP over OSI was also significant because of

the difference in the standardization processes that it exemplified.

The OSI standard (like all official international standards) is

conceived and published as an aid to industrial growth: it was

imagined according to the ground rules of intellectual property and as

an attempt to facilitate the expansion of markets in networking. OSI

would be a ―vendor-neutral‖ standard: vendors would create their

own, secret implementations that could be validated by OSI and

thereby be expected to interoperate with other OSI-validated systems.

By stark contrast, the TCP/IP protocols were not published (in any

conventional sense), nor were the implementations validated by a

legitimate international-standards organization; instead, the protocols

are themselves represented by implementations that allow connection

to the network itself (where the TCP/IP protocols and

implementations are themselves made available). The fact that one

can only join the network if one possesses or makes an

2009] Conceiving Open Systems 165

implementation of the protocol is generally seen as the ultimate in

validation: it works.
37

 In this sense, the struggle between TCP/IP and

OSI is indicative of a very familiar twentieth-century struggle over

the role and extent of government planning and regulation (versus

entrepreneurial activity and individual freedom), perhaps best

represented by the twin figures of Friedrich Hayek and Maynard

Keynes. In this story, it is Hayek‘s aversion to planning and the

subsequent privileging of spontaneous order that eventually triumphs,

not Keynes‘s paternalistic view of the government as a neutral body

that absorbs or encourages the swings of the market.

VI. BOOTSTRAPPING NETWORKS

The ―religious war‖ between TCP/IP and OSI occurred in the

context of intense competition among computer manufacturers and

during a period of vibrant experimentation with computer networks

worldwide. As with most developments in computing, IBM was one

of the first manufacturers to introduce a networking system for its

machines in the early 1970s: the System Network Architecture

(―SNA‖). DEC followed suit with Digital Network Architecture

(―DECnet‖ or ―DNA‖), as did Univac with Distributed

Communications Architecture (―DCA‖), Burroughs with Burroughs

Network Architecture (―BNA‖), and others. These architectures were,

like the proprietary operating systems of the same era, considered

closed networks, networks that interconnected a centrally planned

and specified number of machines of the same type or made by the

same manufacturer. The goal of such networks was to make

connections internal to a firm, even if that involved geographically

widespread systems (e.g., from branch to headquarters). Networks

were also to be products.

The 1970s and 1980s saw extraordinarily vibrant experimentation

with academic, military, and commercial networks. Robert Metcalfe

had developed Ethernet at Xerox PARC in the mid-1970s, and IBM

 37. The advantages of such an unplanned and unpredictable network have come to be
identified in hindsight as a design principle. For an excellent analysis of the history of ―end to

end‖ or ―stupid‖ networks, see Tarleton Gillespie, Engineering a Principle: End-to-End in the

Design of the Internet, 36 SOC. STUD. SCI. 427, 441–50 (2006).

166 Journal of Law & Policy [Vol. 30:139

later created a similar technology called ―token ring.‖ In the 1980s

the military discovered that the Arpanet was being used

predominantly by computer scientists and not just for military

applications, and decided to break it into MILNET and CSNET.
38

Bulletin Board Services, which connected PCs to each other via

modems to download files, appeared in the late 1970s. Out of this

grew Tom Jennings‘s very successful experiment called FidoNet.
39

 In

the 1980s an existing social network of university faculty on the East

Coast of the United States started a relatively successful network

called BITNET (Because It‘s There Network) in the mid-1980s.
40

The Unix to Unix Copy Protocol (―uucp‖), which initially enabled

the Usenet, was developed in the late 1970s and widely used until the

mid-1980s to connect UNIX computers together. In 1984 the NSF

began a program to fund research in networking and created the first

large backbones for NSFNet, successor to the CSNET and Arpanet.
41

In the 1970s telecommunications companies and spin-off start-ups

experimented widely with what were called ―videotex‖ systems, of

which the most widely implemented and well known is Minitel in

France.
42

 Such systems were designed for consumer users and often

provided many of the now widespread services available on the

Internet in a kind of embryonic form (from comparison shopping for

cars, to directory services, to pornography).
43

 By the late 1970s,

videotex systems were in the process of being standardized by the

Commité Consultative de Information, Technologie et

Télécommunications (―CCITT‖) at the International

Telecommunications Union (―ITU‖) in Geneva. These standards

 38. William J. Broad, Global Computer Network Split as Safeguard, N.Y. TIMES, Oct. 5,

1983, at A13.
 39. See DVD: BBS: The Documentary (Bovine Ignition Systems, 2005), available at

http://www.bbsdocumentary.com/.

 40. David Alan Grier & Mary Campbell, A Social History of Bitnet and Listserv 1985–
1991, IEEE ANNALS HIST. COMPUTING, Apr.–June 2000, at 32, 33.

 41. See MICHAEL HAUBEN & RONDA HAUBEN, NETIZENS: ON THE HISTORY AND IMPACT

OF USENET AND THE INTERNET (1997); see also Bryan Pfaffenberger, “A Standing Wave in the
Web of Our Communications”: Usenet and the Socio-Technical Construction of Cyberspace

Values, in FROM USENET TO COWEBS: INTERACTING WITH SOCIAL INFORMATION SPACES 20,

20–43 (Christopher Lueg & Danyel Fisher eds., 2003).
 42. SUSANNE K. SCHMIDT & RAYMUND WERLE, COORDINATING TECHNOLOGY: STUDIES

IN THE INTERNATIONAL STANDARDIZATION OF TELECOMMUNICATIONS 147–84 (1998).

 43. See, e.g., JAMES MARTIN, VIEWDATA AND THE INFORMATION SOCIETY (1982).

http://www.bbsdocumentary.com/

2009] Conceiving Open Systems 167

efforts would eventually be combined with work of the International

Organization for Standardization (―ISO‖) on OSI, which had

originated from work done at Honeywell.
44

One important feature united almost all of these experiments: the

networks of the computer manufacturers were generally piggybacked,

or bootstrapped, onto existing telecommunications infrastructures

built by state-run or regulated monopoly telecommunications firms.

This situation inevitably spelled grief, for telecommunications

providers are highly regulated entities, while the computer industry

has been almost totally unregulated from its inception. Since an

increasingly core part of the computer industry‘s business involved

transporting signals through telecommunications systems without

being regulated to do so, the telecommunications industry naturally

felt themselves at a disadvantage.
45

 Telecommunications companies

were not slow to respond to the need for data communications, but

their ability to experiment with products and practices outside the

scope of telephony and telegraphy was often hindered by concerns

about antitrust and monopoly.
46

 The unregulated computer industry,

by contrast, saw the tentativeness of the telecommunications industry

(or national PTTs) as either bureaucratic inertia or desperate attempts

to maintain control and power over existing networks—though no

computer manufacturer relished the idea of building their own

physical network when so many already existed.

TCP/IP and OSI have become emblematic of the split between the

worlds of telecommunications and computing; the metaphors of

religious wars or of blood feuds and cold wars were common.
47

 A

 44. There is little information on the development of open systems; there is, however, a

brief note from William Stallings, author of perhaps the most widely used textbook on
networking. William Stallings, The Origins of OSI (1998), http://williamstallings.com/Extras/

OSI.html.

 45. GERALD W. BROCK, THE SECOND INFORMATION REVOLUTION (2003), is a good
introductory source for this conflict, at least in its policy outlines. The Federal Communications

Commission issued two decisions (known as ―Computer 1‖ and ―Computer 2‖) that attempted

to deal with this conflict by trying to define what counted as voice communication and what as
data. See In re Regulatory & Policy Problems Presented by the Interdependence of Computer &

Commc‘n Servs. & Facilities, 28 F.C.C. 2d 291 (1970) (known as Computer 1); In re Second

Computer Inquiry, 77 F.C.C. 2d 384 (1980) (known as Computer 2), superseded by regulation
as stated in In re N.J. Bell Telephone Co., 8 F.C.C.R. 5153 (1993).

 46. See BROCK, supra note 45, at 170–85.

 47. See, e.g., William J. Drake, The Internet Religious War, 17 TELECOMM. POL‘Y 643,

http://williamstallings.com/Extras/OSI.html
http://williamstallings.com/Extras/OSI.html

168 Journal of Law & Policy [Vol. 30:139

particularly arch account from this period is Carl Malamud‘s

Exploring the Internet: A Technical Travelogue, which documents

Malamud‘s (physical) visits to Internet sites around the globe,

discussions (and beer) with networking researchers on technical

details of the networks they have created, and his own typically

geeky, occasionally offensive takes on cultural difference.
48

 A

subtheme of the story is the religious war between Geneva (in

particular the ITU) and the Internet: Malamud tells the story of

asking the ITU to release its 19,000-page ―blue book‖ of standards on

the Internet, to facilitate its adoption and spread.
49

The resistance of the ITU and Malamud‘s heroic if quixotic

attempts are a parable of the moral-technical imaginaries of

openness—and indeed, his story draws specifically on the usable past

of Giordano Bruno.
50

 The ―bruno‖ project demonstrates the gulf that

exists between two models of legitimacy—those of ISO and the

ITU—in which standards represent the legal and legitimate consensus

of a regulated industry, approved by member nations, paid for and

enforced by governments, and implemented and adhered to by

corporations.

Opposite ISO is the ad hoc, experimental style of Arpanet and

Internet researchers, in which standards are freely available and

implementations represent the mode of achieving consensus, rather

than the outcome of the consensus. In reality, such a rhetorical

opposition is far from absolute: many ISO standards are used on the

Internet, and ISO remains a powerful, legitimate standards

organization. But the clash of established (telecommunications) and

emergent (computer-networking) industries is an important context

for understanding the struggle between OSI and TCP/IP.

643–49 (1993).

 48. CARL MALAMUD, EXPLORING THE INTERNET: A TECHNICAL TRAVELOGUE (1992);
see also Michael M. J. Fischer, Worlding Cyberspace: Toward a Critical Ethnography in Time,

Space, and Theory, in CRITICAL ANTHROPOLOGY NOW 245, 245–304 (George E. Marcus ed.,

1999).
 49. MALAMUD, supra note 48, at 5.

 50. The usable past of Giordano Bruno is invoked by Malamud to signal the heretical

nature of his own commitment to openly publishing standards that ISO was opposed to
releasing. Bruno‘s fate at the hands of the Roman Inquisition hinged in some part on his

acceptance of the Copernican cosmology, so he has been, like Galileo, a natural figure for

revolutionary claims during the 1990s. Id. at 35.

2009] Conceiving Open Systems 169

The need for standard networking protocols is unquestioned:

interoperability is the bread and butter of a network. Nonetheless, the

goals of the OSI and the TCP/IP protocols differed in important

ways, with profound implications for the shape of that

interoperability. OSI‘s goals were completeness, control, and

comprehensiveness. OSI grew out of the telecommunications

industry, which had a long history of confronting the vicissitudes of

linking up networks and facilitating communication around the

world, a problem that required a strong process of consensus and

negotiation among large, powerful, government-run entities, as well

as among smaller manufacturers and providers. OSI‘s feet were

firmly planted in the international standardization organizations like

OSI and the ITU (an organization as old as telecommunications itself,

dating to the 1860s).

Even if they were oft-mocked as slow, bureaucratic, or

cumbersome, the processes of ISO and ITU-based in consensus,

international agreement, and thorough technical specification—are

processes of unquestioned legitimacy. The representatives of nations

and corporations who attend ISO and ITU standards discussions, and

who design, write, and vote on these standards, are usually not

bureaucrats, but engineers and managers directly concerned with the

needs of their constituency. The consensus-oriented process means

that ISO and ITU standards attempt to satisfy all members‘ goals, and

as such they tend to be very large, complex, and highly specific

documents. They are generally sold to corporations and others who

need to use them, rather than made freely available, a fact that until

recently reflected their legitimacy, rather than lack thereof.

TCP/IP, on the other hand, emerged from very different

conditions.
51

 These protocols were part of a Department of Defense-

funded experimental research project: Arpanet. The initial Arpanet

 51. JANET ABBATE, INVENTING THE INTERNET 133–45 (1999); BROCK, supra note 45, at
146–51; ALEXANDER GALLOWAY, PROTOCOL: HOW CONTROL EXISTS AFTER

DECENTRALIZATION 3–9 (2004); PETER H. SALUS, CASTING THE NET: FROM ARPANET TO

INTERNET AND BEYOND (1995). For practitioner histories, see David D. Clark, The Design
Philosophy of the DARPA Internet Protocols, in COMPUTER COMMUNICATIONS:

ARCHITECTURES, PROTOCOLS, AND STANDARDS 54, 54–62 (William Stallings ed., 1992);

Robert Kahn et al., The Evolution of the Internet as a Global Information System, 29 INT‘L

INFO. & LIBR. REV. 129 (1997).

170 Journal of Law & Policy [Vol. 30:139

protocols (the Network Control Protocol, or NCP) were insufficient,

and TCP/IP was an experiment in interconnecting two different

―packet-switched networks‖: the ground-line-based Arpanet network

and a radio-wave network called Packet Radio.
52

 The problem facing

the designers was not how to accommodate everyone, but merely

how to solve a specific problem: interconnecting two technically

diverse networks, each with autonomous administrative boundaries,

but forcing neither of them to give up the system or the autonomy.

Until the mid-1980s, the TCP/IP protocols were resolutely

research-oriented, and not the object of mainstream commercial

interest. Their development reflected a core set of goals shared by

researchers and ultimately promoted by the central funding agency,

the Department of Defense. The TCP/IP protocols are often referred

to as enabling packet-switched networks, but this is only partially

correct; the real innovation of this set of protocols was a design for an

―inter-network,‖ a system that would interconnect several diverse and

autonomous networks (packet-switched or circuit-switched), without

requiring them to be transformed, redesigned, or standardized—in

short, by requiring only standardization of the intercommunication

between networks, not standardization of the network itself. In the

first paper describing the protocol Robert Kahn and Vinton Cerf

motivated the need for TCP/IP thus:

Even though many different and complex problems must be

solved in the design of an individual packet-switching

network, these problems are manifestly compounded when

dissimilar networks are interconnected. Issues arise which may

have no direct counterpart in an individual network and which

strongly influence the way in which Internetwork

communication can take place.
53

The explicit goal of TCP/IP was thus to share computer resources,

not necessarily to connect two individuals or firms together, or to

create a competitive market in networks or networking software.

Sharing between different kinds of networks implied allowing the

 52. See ABBATE, supra note 51, at 114–36; Kahn et al., supra note 51, at 134–40.

 53. Vinton G. Cerf & Robert E. Kahn, A Protocol for Packet Network
Intercommunication, 22 IEEE TRANSACTIONS ON COMM. 637, 637 (1974).

2009] Conceiving Open Systems 171

different networks to develop autonomously (as their creators and

maintainers saw best), but without sacrificing the ability to continue

sharing. Years later, David Clark, chief Internet engineer for several

years in the 1980s, gave a much more explicit explanation of the

goals that led to the TCP/IP protocols. In particular, he suggested that

the main overarching goal was not just to share resources but ―to

develop an effective technique for multiplexed utilization of existing

interconnected networks,‖
54

 and he more explicitly stated the issue of

control that faced the designers: ―[N]etworks represent administrative

boundaries of control, and it was an ambition of this project to come

to grips with the problem of integrating a number of separately

administrated entities into a common utility.‖
55

 By placing the goal of

expandability first, the TCP/IP protocols were designed with a

specific kind of simplicity in mind: the test of the protocols‘ success

was simply the ability to connect.

By setting different goals, TCP/IP and OSI thus differed in terms

of technical details; but they also differed in terms of their context

and legitimacy, one being a product of international-standards bodies,

the other of military-funded research experiments. The technical and

organizational differences imply different processes for

standardization, and it is the peculiar nature of the so-called Requests

for Comments (―RFC‖) process that gave TCP/IP one of its most

distinctive features. The RFC system is widely recognized as a

unique and serendipitous outcome of the research process of

Arpanet.
56

 In a thirty-year retrospective (published, naturally, as an

RFC: RFC 2555), Vinton Cerf says, ―Hiding in the history of the

RFCs is the history of human institutions for achieving cooperative

work.‖
57

 He goes on to describe their evolution over the years:

When the RFCs were first produced, they had an almost 19th

century character to them—letters exchanged in public

debating the merits of various design choices for protocols in

 54. Clark, supra note 51, at 54.

 55. Id. at 55.

 56. RFCs are archived in many places, but the official site is RFC Editor, http://www.rfc-
editor.org/ (last visited Feb. 27, 2009).

 57. RFC Editor, 30 Years of RFCs 5 (Apr. 7, 1999), http://www.rfc-editor.org/rfc/rfc

2555.txt.

http://www.rfc-editor.org/
http://www.rfc-editor.org/

172 Journal of Law & Policy [Vol. 30:139

the ARPANET. As email and bulletin boards emerged from

the fertile fabric of the network, the far-flung participants in

this historic dialog began to make increasing use of the online

medium to carry out the discussion—reducing the need for

documenting the debate in the RFCs and, in some respects,

leaving historians somewhat impoverished in the process.

RFCs slowly became conclusions rather than debates.
58

Increasingly, they also became part of a system of discussion and

implementation in which participants created working software as

part of an experiment in developing the standard, after which there

was more discussion, then perhaps more implementation, and finally,

a standard. The RFC process was a way to condense the process of

standardization and validation into implementation; which is to say,

the proof of open systems was in the successful connection of diverse

networks, and the creation of a standard became a kind of ex post

facto rubber-stamping of this demonstration. Any further

improvement of the standard hinged on an improvement on the

standard implementation because the standards that resulted were

freely and widely available:

A user could request an RFC by email from his host computer

and have it automatically delivered to his mailbox. . . . RFCs

were also shared freely with official standards bodies,

manufacturers and vendors, other working groups, and

universities. None of the RFCs were ever restricted or

classified. This was no mean feat when you consider that they

were being funded by DoD during the height of the Cold

War.
59

The OSI protocols were not nearly so freely available. The ironic

reversal—the transparency of a military-research program versus the

opacity of a Geneva-based international-standards organization—

goes a long way toward explaining the reasons why geeks might find

the story of TCP/IP‘s success to be so appealing. It is not that geeks

are secretly militaristic, but that they delight in such surprising

 58. Id. at 6.

 59. Id. at 11.

2009] Conceiving Open Systems 173

reversals, especially when those reversals exemplify the kind of ad

hoc, clever solution to problems of coordination that the RFC process

does. The RFC process is not the only alternative to a consensus-

oriented model of standardization pioneered in the international

organizations of Geneva, but it is a specific response to a

reorientation of power and knowledge that was perhaps more

―intuitively obvious‖ to the creators of Arpanet and the Internet, with

its unusual design goals and context, than it would have been to the

purveyors of telecommunications systems with over a hundred years

of experience in connecting people in very specific and established

ways.

VII. SUCCESS AS FAILURE

By 1985, OSI was an official standard, one with widespread

acceptance by engineers, by the government and military (the

―GOSIP‖ standard), and by a number of manufacturers, the most

significant of which was General Motors, with its Manufacturing

Automation Protocol (―MAP‖). In textbooks and handbooks of the

late 1980s and early 1990s, OSI was routinely referred to as the

inevitable standard—which is to say, it had widespread legitimacy as

the standard that everyone should be implementing—but few

implementations existed. Many of the textbooks on networking from

the late 1980s, especially those slanted toward a theoretical

introduction, give elaborate detail of the OSI reference model—a

generation of students in networking was no doubt trained to

understand the world in terms of OSI—but the ambivalence

continued. Indeed, the most enduring legacy of the creation of the

OSI protocols is not the protocols themselves (some of which, like

ASN.1, are still widely used today), but the pedagogical model: the

―7 layer stack‖ that is as ubiquitous in networking classes and

textbooks as UNIX is in operating-systems classes.
60

 60. This can be clearly seen, for instance, by comparing the various editions of the main

computer-networking textbooks. See, e.g., DOUGLAS E. COMER, INTERNETWORKING WITH

TCP/IP (five editions between 1991 and 2005); WILLIAM STALLINGS, DATA AND COMPUTER

COMMUNICATIONS (eight editions between 1985 and 2006); ALFRED S. TANENBAUM,

COMPUTER NETWORKS (four editions between 1981 and 2003).

174 Journal of Law & Policy [Vol. 30:139

But in the late 1980s, the ambivalence turned to confusion. With

OSI widely recognized as the standard, TCP/IP began to show up in

more and more actually existing systems. For example, in Computer

Network Architectures and Protocols, Carl Sunshine says, ―Now in

the late 1980s, much of the battling seems over. CCITT and ISO have

aligned their efforts, and the research community seems largely to

have resigned itself to OSI.‖
61

 But immediately afterward he adds:

It is ironic that while a consensus has developed that OSI is

indeed inevitable, the TCP/IP protocol suite has achieved

widespread deployment, and now serves as a de facto

interoperability standard. . . . It appears that the vendors were

unable to bring OSI products to market quickly enough to

satisfy the demand for interoperable systems, and TCP/IP were

there to fill the need.
62

The more implementations that appeared, the less secure the

legitimate standard seemed to be. By many accounts the OSI

specifications were difficult to implement, and the yearly

networking-industry ―Interop‖ conferences became a regular locale

for the religious war between TCP/IP and OSI. The success of

TCP/IP over OSI reflects the reorientation of knowledge and power

to which Free Software is also a response. The reasons for the

success are no doubt complex, but the significance of the success of

TCP/IP illustrates three issues: availability, modifiability, and

serendipity.

A. Availability

The TCP/IP standards themselves were free to anyone and

available over TCP/IP networks, exemplifying one of the aspects of a

recursive public: that the only test of participation in a TCP/IP-based

internetwork is the fact that one possesses or has created a device that

implements TCP/IP. Access to the network is contingent on the

interoperability of the networks. The standards were not ―published‖

 61. Carl A. Sunshine, A Brief History of Computer Networking, in COMPUTER NETWORK

ARCHITECTURES AND PROTOCOLS 3, 5 (Carl A. Sunshine ed., 2d ed. 1989).

 62. Id.

2009] Conceiving Open Systems 175

in a conventional sense, but made available through the network

itself, without any explicit intellectual property restrictions, and

without any fees or restrictions on who could access them. By

contrast, ISO standards are generally not circulated freely, but sold

for relatively high prices, as a source of revenue, and under the

general theory that only legitimate corporations or government

agencies would need access to them.

Related to the availability of the standards is the fact that the

standards process that governed TCP/IP was itself open to anyone,

whether corporate, military or academic. The structure of governance

of the Internet Engineering Task Force (―IETF‖) and the Internet

Society (―ISOC‖) allowed for anyone with the means available to

attend the ―working group‖ meetings that would decide on the

standards that would be approved. Certainly this does not mean that

the engineers and defense contractors responsible actively sought out

corporate stakeholders or imagined the system to be ―public‖ in any

dramatic fashion; however, compared to the system in place at most

standards bodies (in which members are usually required to be the

representatives of corporations or governments), the IETF allowed

individuals to participate qua individuals.
63

B. Modifiability

Implementations of TCP/IP were widely available, bootstrapped

from machine to machine along with the UNIX operating system and

other tools (e.g., the implementation of TCP/IP in BSD 4.2, the BSD

version of UNIX), generally including the source code. An existing

implementation is a much more expressive and usable object than a

specification for an implementation, and though ISO generally

prepares reference implementations for such standards, in the case of

OSI there were many fewer implementations to work with or build

on. Because multiple implementations of TCP/IP already existed, it

was easy to validate: did your (modified) implementation work with

the other existing implementations? By contrast, OSI would provide

 63. The structure of the IETF, the Internet Architecture Board, and the ISOC is detailed in

COMER (2d ed. 1991), supra note 60, at 9–11; see also SCHMIDT & WERLE, supra note 42, at
53–56.

176 Journal of Law & Policy [Vol. 30:139

independent validation, but the in situ validation through connection

to other OSI networks was much harder to achieve, there being too

few of them, or access being restricted. It is far easier to build on an

existing implementation and to improve on it piecemeal, or even to

rewrite it completely, using its faults as a template (so to speak), than

it is to create an implementation based solely on a standard. The

existence of the TCP/IP protocols in BSD 4.2 not only meant that

people who installed that operating system could connect to the

Internet easily, at a time when it was by no means standard to be able

to do so, but it also meant that manufacturers or tinkerers could

examine the implementation in BSD 4.2 as the basis for a modified,

or entirely new, implementation.

C. Serendipity

Perhaps most significant, the appearance of widespread and

popular applications that were dependent on TCP/IP gave those

protocols an inertia that OSI, with relatively few such applications,

did not have. The most important of these by far was the World Wide

Web (the http protocol, the HTML mark-up language, and

implementations of both servers, such as libwww, and clients, such as

Mosaic and Netscape). The basic components of the Web were made

to work on top of the TCP/IP networks, like other services that had

already been designed (ftp, telnet, gopher, archie, etc.); thus, Tim

Berners-Lee, who co-invented the World Wide Web, could also rely

on the availability and openness of previous work for his own

protocols. In addition, Berners-Lee and CERN (the European

Organization for Nuclear Research) dedicated their work to the

public domain more or less immediately, essentially allowing anyone

to do anything they wished with the system they had cobbled

together.
64

 From the perspective of the tension between TCP/IP and

OSI, the World Wide Web was thus what engineers call a ―killer

app,‖ because its existence actually drove individuals and

corporations to make decisions (in favor of TCP/IP) that it might not

have made otherwise.

 64. See TIM BERNERS-LEE, WEAVING THE WEB: THE ORIGINAL DESIGN AND ULTIMATE

DESTINY OF THE WORLD WIDE WEB (1999) (detailing the origins of the World Wide Web).

2009] Conceiving Open Systems 177

CONCLUSION

Openness and open systems are key to understanding the practices

of Free Software: the open-systems battles of the 1980s set the

context for Free Software, leaving in their wake a partially articulated

infrastructure of operating systems, networks, and markets that

resulted from figuring out open systems. The failure to create a

standard UNIX operating system opened the door for Microsoft

Windows NT, but it also set the stage for the emergence of the Linux-

operating-system kernel to emerge and spread. The success of the

TCP/IP protocols forced multiple competing networking schemes

into a single standard—and a singular entity, the Internet—that

carried with it a set of built-in goals that mirror the moral-technical

order of Free Software.

This ―infrastructure‖ is at once technical (protocols and standards

and implementations) and moral (expressing ideas about the proper

order and organization of commercial efforts to provide high-tech

software, networks, and computing power). As with the invention of

UNIX, the opposition commercial-noncommercial (or its

doppelgangers public-private, profit-nonprofit, capitalist-socialist,

etc.) doesn‘t capture the context. Constraints on the ability to

collaborate, compete, or withdraw are in the making here through the

technical and moral imaginations of the actors involved: from the

corporate behemoths like IBM to (onetime) startups like Sun to the

independent academics and amateurs and geeks with stakes in the

new high-tech world of networks and software.

The creation of a UNIX market failed. The creation of a legitimate

international networking standard failed. But they were local failures

only. They opened the doors to new forms of commercial practice

(exemplified by Netscape and the dotcom boom) and new kinds of

politicotechnical fractiousness (ICANN, IPv6, and ―net neutrality‖).

But the blind spot of open systems-intellectual property—at the heart

of these failures also provided the impetus for some geeks,

entrepreneurs, and lawyers to start figuring out the legal and

economic aspects of Free Software, and it initiated a vibrant

experimentation with copyright licensing and with forms of

innovative coordination and collaboration built on top of the rapidly

spreading protocols of the Internet.

